+0  
 
0
8
1
avatar+414 

In triangle $PQR,$ $M$ is the midpoint of $\overline{QR}.$ Find $PM.$
PQ = 5, PR = 8, QR = 11

 Jan 25, 2025
 #1
avatar+130462 
+1

                      P

             5                  8

 

Q      5.5            M        5.5                R

 

Law of Cosines

Two Equations

5^2  = 5.5^2 + PM^2  - 2 ( 5.5 * PM)  cos PMQ

8^2  = 5.5^2  + PM^2  - 2 (5.5 * PM) cos  PMR

 

cos PMR  = -cos PMQ

 

So

 

5^2  = 5.5^2 + PM^2  - 2 (5.5 * PM) cos PMQ

8^2  = 5.5^2 + PM^2 + 2(5.5* PM) cos PMQ       add these

 

89  = 60.5 + 2PM^2

 

(89 -60.5) / 2  = PM^2

 

PM^2  = 14.25

 

PM =sqrt [14.25 ] ≈ 3.775

 

 

cool cool cool

 Jan 26, 2025

0 Online Users