Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
26
1
avatar+972 

In triangle PQR, M is the midpoint of ¯QR. Find PM.
PQ = 5, PR = 8, QR = 11

 Aug 4, 2024
 #1
avatar+1950 
+1

First, let's use the Law of Cosines. It states that cosPMQ=cosPMR

 

Thus, we can write the equations

PQ2=QM2+PM22(QMPM)(cosPMR)PR2=RM2+PM22(RMPM)(cosPMR)

 

Plugging in the values we already know from the problem, we get

52=5.52+PM2+2(5.5PM)cos(PMR)82=5.52+PM22(5,5PM)cos(PMR)

 

Now, add these two equations. We get


52+82=25.52+2PM289=60.5+2PM228.5/2=PM214.25=PM2

 

Thus, we have 14.25=PM3.77

 

The answer is 3.77. 

 

Thanks! :)

 Aug 4, 2024
edited by NotThatSmart  Aug 4, 2024

3 Online Users

avatar
avatar
avatar