+0  
 
+1
15
1
avatar+479 

In triangle $ABC$, $M$ is the midpoint of $\overline{BC}$, and $N$ is the midpoint of $\overline{AC}$.  The perpendicular bisectors of $BC$ and $AC$ intersect at a point $O$ inside the triangle.  If $\angle AOB = 90^\circ$, then find the measure of $\angle MON$, in degrees.

 Apr 11, 2024
 #1
avatar+14995 
+1

\(Find\ the\ measure\ of\ \angle MON\ in\ degrees.\)

 

\(\angle CAO+\angle CBO=45°\ |\ peripheral\ \angle \ to\ 90°\ (\angle AOB)\\ \angle MON=90°-\angle CAO+90°-\angle CBO\\ =180°-(\angle CAO+\angle CBO)=180°-45°\\ \color{blue}\angle MON=135° \)

 

laugh  !

.
 Apr 13, 2024
edited by asinus  Apr 13, 2024

3 Online Users