+0  
 
0
167
1
avatar

Let a triangle ABC with BC = 6 cm, and the area of 30 cm2. A square PQRS is inscribed so that points S and R is on BC, Q on AC, and P on AB  respectively. Find the side length of the square PQRS.

 Apr 6, 2022

Best Answer 

 #1
avatar+14225 
+3

Find the side length of the square PQRS.

 

Hello Guest!

 

The height of the triangle is h.

\(A=\frac{1}{2}ah\\ h=\frac{2A}{a}=\frac{2\cdot 30cm^2}{6cm}=\color{blue}10cm\)

 

\(Prerequisite\ for\ a\ square\ on\ \overline{BC}.\\ 90^o\geq \ ∠ABC\ \geq arctan(\frac{10}{6})\\ \)

The side length of the square is x.

\((10-x):10=x:6\\ 60-6x=10x\ |\ +6x\\ 60=16x\ |\ :16\\ \frac{60}{16}=x\\ \color{blue}x=3.75 \)

The side length of the square PQRS is 3.75cm.

laugh  !

 Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
 #1
avatar+14225 
+3
Best Answer

Find the side length of the square PQRS.

 

Hello Guest!

 

The height of the triangle is h.

\(A=\frac{1}{2}ah\\ h=\frac{2A}{a}=\frac{2\cdot 30cm^2}{6cm}=\color{blue}10cm\)

 

\(Prerequisite\ for\ a\ square\ on\ \overline{BC}.\\ 90^o\geq \ ∠ABC\ \geq arctan(\frac{10}{6})\\ \)

The side length of the square is x.

\((10-x):10=x:6\\ 60-6x=10x\ |\ +6x\\ 60=16x\ |\ :16\\ \frac{60}{16}=x\\ \color{blue}x=3.75 \)

The side length of the square PQRS is 3.75cm.

laugh  !

asinus Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022

6 Online Users