+0  
 
0
111
1
avatar

Let a triangle ABC with BC = 6 cm, and the area of 30 cm2. A square PQRS is inscribed so that points S and R is on BC, Q on AC, and P on AB  respectively. Find the side length of the square PQRS.

 Apr 6, 2022

Best Answer 

 #1
avatar+13896 
+3

Find the side length of the square PQRS.

 

Hello Guest!

 

The height of the triangle is h.

\(A=\frac{1}{2}ah\\ h=\frac{2A}{a}=\frac{2\cdot 30cm^2}{6cm}=\color{blue}10cm\)

 

\(Prerequisite\ for\ a\ square\ on\ \overline{BC}.\\ 90^o\geq \ ∠ABC\ \geq arctan(\frac{10}{6})\\ \)

The side length of the square is x.

\((10-x):10=x:6\\ 60-6x=10x\ |\ +6x\\ 60=16x\ |\ :16\\ \frac{60}{16}=x\\ \color{blue}x=3.75 \)

The side length of the square PQRS is 3.75cm.

laugh  !

 Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
 #1
avatar+13896 
+3
Best Answer

Find the side length of the square PQRS.

 

Hello Guest!

 

The height of the triangle is h.

\(A=\frac{1}{2}ah\\ h=\frac{2A}{a}=\frac{2\cdot 30cm^2}{6cm}=\color{blue}10cm\)

 

\(Prerequisite\ for\ a\ square\ on\ \overline{BC}.\\ 90^o\geq \ ∠ABC\ \geq arctan(\frac{10}{6})\\ \)

The side length of the square is x.

\((10-x):10=x:6\\ 60-6x=10x\ |\ +6x\\ 60=16x\ |\ :16\\ \frac{60}{16}=x\\ \color{blue}x=3.75 \)

The side length of the square PQRS is 3.75cm.

laugh  !

asinus Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022
edited by asinus  Apr 6, 2022

11 Online Users

avatar