Let a triangle ABC with BC = 6 cm, and the area of 30 cm2. A square PQRS is inscribed so that points S and R is on BC, Q on AC, and P on AB respectively. Find the side length of the square PQRS.
Find the side length of the square PQRS.
Hello Guest!
The height of the triangle is h.
\(A=\frac{1}{2}ah\\ h=\frac{2A}{a}=\frac{2\cdot 30cm^2}{6cm}=\color{blue}10cm\)
\(Prerequisite\ for\ a\ square\ on\ \overline{BC}.\\ 90^o\geq \ ∠ABC\ \geq arctan(\frac{10}{6})\\ \)
The side length of the square is x.
\((10-x):10=x:6\\ 60-6x=10x\ |\ +6x\\ 60=16x\ |\ :16\\ \frac{60}{16}=x\\ \color{blue}x=3.75 \)
The side length of the square PQRS is 3.75cm.
!
Find the side length of the square PQRS.
Hello Guest!
The height of the triangle is h.
\(A=\frac{1}{2}ah\\ h=\frac{2A}{a}=\frac{2\cdot 30cm^2}{6cm}=\color{blue}10cm\)
\(Prerequisite\ for\ a\ square\ on\ \overline{BC}.\\ 90^o\geq \ ∠ABC\ \geq arctan(\frac{10}{6})\\ \)
The side length of the square is x.
\((10-x):10=x:6\\ 60-6x=10x\ |\ +6x\\ 60=16x\ |\ :16\\ \frac{60}{16}=x\\ \color{blue}x=3.75 \)
The side length of the square PQRS is 3.75cm.
!