In quadrilateral $BCED$, sides $\overline{BD}$ and $\overline{CE}$ are extended past $B$ and $C$, respectively, to meet at point $A$. If $BD = 8$, $BC = 3$, $CE = 1$, $AC = 19$ and $AB = 13$, then what is $DE$?
If BD=8, BC=3, CE=1, AC=19 and AB=13, then what is DE?
fAB(x)=√132−x2fBC(x)=√32−(x−19)2169−x2=9−x2+38x−36138x=169−9+361=521xB=13.7105yB=√−18.9...
The triangle ABC, with sides 3, 19, 13 is not possible.
!