+0  
 
0
11
1
avatar+1839 

In triangle $ABC$, $\angle ABC = 90^\circ$, and $D$ is on side $\overline{BC}$ such that $\overline{AD}$ bisects $\angle BAC$.  If $AB = 4,$ $BC = 3$, and $AC = 5,$ then find the area of $\triangle ADC$. Round your answer to the nearest integer.

 Jul 21, 2024
 #1
avatar+1926 
+1

Let's set some variables to solve this question. 

Now, since AD bisects  BAC

Let's let BD  = 3 - x

Let's let  CD =  x

 

Now, we have the formula

\( BD / AB = CD / AC \\ (3 - x) / 4 = x / 5\\ 5 (3 - x) = 4x \\ 15 - 5x = 4x \\ 15 = 9x \\ x = 15/9 = 5/3 = CD\)

 

Thus, we finally can caclulate ADC as

\([ ADC ] = (1/2) (CD) ( AB) = (1/2) ( 5/3) ( 4) = 10 / 3 \)

 

Thus, The answer is \(10/3\)

 

Thanks! :)

 Jul 21, 2024
edited by NotThatSmart  Jul 21, 2024

2 Online Users

avatar
avatar