In triangle $ABC$, $\angle ABC = 90^\circ$, and $D$ is on side $\overline{BC}$ such that $\overline{AD}$ bisects $\angle BAC$. If $AB = 4,$ $BC = 3$, and $AC = 5,$ then find the area of $\triangle ADC$. Round your answer to the nearest integer.
γ=atan43γ=53.1301∘α=arcsin35α=33.8699∘α2=18.4349∘
∠ADC=(180−53.1301−18.4349)∘∠ADC=108.4349∘
tanalpha2=¯BD4¯BD=4⋅tan 18.4349∘¯BD=113¯DC=3−113¯DC=53
AADC=¯DC⋅¯AB2=53⋅42=206AADC=313
!