+0  
 
0
375
1
avatar

Let $C$ and $D$ be points on the semicircle with diameter $\overline{AB}$. If $AD = BC = 3$ and $CD = 7$, then find the radius of the semicircle.

Guest May 8, 2018
 #1
avatar+20009 
+1

Let $C$ and $D$ be points on the semicircle with diameter $\overline{AB}$. If $AD = BC = 3$ and $CD = 7$,

then find the radius of the semicircle.

 

 

1. sin rule:

\(\begin{array}{|rcll|} \hline \dfrac{ \sin(180^{\circ}-2\varphi) } {7} &=& \dfrac{ \sin(\varphi) }{r} \\ \dfrac{2\sin(\varphi)\cos(\varphi)}{7} &=& \dfrac{\sin(\varphi)}{r} \\ \dfrac{2 \cos(\varphi)}{7} &=& \dfrac{1}{r} \\ \cos(\varphi) &=& \dfrac{7}{2r} \\ \hline \end{array} \)

 

2. cos rule:

\(\begin{array}{|rcll|} \hline 3^2 &=& r^2+r^2-2rr\cos(\varphi) \\ 9 &=& 2r^2(1-\cos(\varphi)) \\ \dfrac{9}{2r^2} &=& 1-\cos(\varphi) \quad & | \quad \cos(\varphi) = \dfrac{7}{2r} \\ \dfrac{9}{2r^2} &=& 1-\dfrac{7}{2r}\quad & | \quad \cdot 2r^2 \\ 9 &=& 2r^2 -7r \\ 2r^2 -7r -9 &=& 0 \\ r &=& \dfrac{7 \pm \sqrt{49-4\cdot 2\cdot (-9) } } {2\cdot 2} \\ &=& \dfrac{7 \pm \sqrt{49+72 } } {4} \\ &=& \dfrac{7 \pm \sqrt{121 } } {4} \\ r &=& \dfrac{7 \pm 11 } {4} \quad & | \quad r > 0\ !\\ &=& \dfrac{7 +11 } {4} \\ &=& \dfrac{18 } {4} \\ \mathbf{r} &\mathbf{=}& \mathbf{4.5} \\ \hline \end{array}\)

 

The radius of the semicircle is 4.5

 

laugh

heureka  May 8, 2018
edited by heureka  May 8, 2018
edited by heureka  May 8, 2018

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.