+0  
 
0
1
1
avatar+433 

Points $A,$ $B,$ and $C$ are given in the coordinate plane.  There exists a point $Q$ and a constant $k$ such that for any point $P$,
PA^2 + PB^2 + PC^2 = 3PQ^2 + k.
If $A = (2,4),$ $B = (-3,1),$ and $C = (1,7)$, then find the constant $k$.

 
 Jan 6, 2025
 #1
avatar+130071 
+1

Let P  = (x,y)

 

PA^2 + PB^2 + PC^2  = 3PQ^2 + k

 

(x -2)^2 + (y -4)^2 + ( x + 3)^2 + (y -1)^2 + (x -1)^2 + ( y - 7)^2 = 3PQ^2 + k

 

3x^2 + 3y^2 + 24y + 80  =  3PQ^2 + k               complete the square on y    

 

3x^2 + 3(y^2 + 8y + 80/3)  = 3PQ^2 + k

 

3x^2 + 3( y^2 + 8y + 16 + 80/3 - 16) = 3PQ^2 + k

 

3x^2 + 3(y + 4)^2 + 3 ( 80/3 - 48/3) = 3PQ^2 + k

 

3x^2 + 3(y + 4)^2  + 3 (32/3)  = 3PQ^2 + k

 

3 [ x^2 + (y + 4)^2 ] + 32 = 3 PQ^2 + k

 

P =(x, y)   Q = (0, -4)

 

PQ^2  = [ x^2 + ( y + 4)^2]

 

k = 32

 

cool cool cool

 Jan 7, 2025

0 Online Users