+0  
 
-1
1
1
avatar+478 

In triangle $ABC$, points $D$ and $F$ are on $\overline{AB},$ and $E$ is on $\overline{AC}$ such that $\overline{DE}\parallel \overline{BC}$ and $\overline{EF}\parallel \overline{CD}$. If $CE =3$ and $DF = 3$, then what is $BD$?

 Mar 30, 2025
 #1
avatar+15079 
+1

 If CE = 3 and DF = 3, then what is BD?

 

Im Dreieck ABC liegen die Punkte D und F auf {AB} und E auf {AC}, sodass {DE}\parallel {BC} und {EF} parallel {CD} sind. Wenn CE = 3 und DF = 3, was ist dann BD?

 

Let AF = AE = c and BD = x. 

Then, according to the first ray theorem:

 

\(\dfrac{s+3}{s}=\dfrac{s+3+x}{s+3}\\ s^2+6x+9=s^2+3s+sx\\ sx=3s+9\\ x=3+\dfrac{9}{s}\)

 

To solve the question, it is necessary to specify an additional value, for example AE.

laugh !

 Apr 2, 2025

0 Online Users