+0  
 
0
1
1
avatar+433 

In parallelogram EFGH, let M be the point on \overline{EF} such that FM:ME = 1:1, and let N be the point on \overline{EH} such that HN:NE = 1:1. Line segments \overline{FH} and \overline{GM} intersect at P, and line segments \overline{FH} and GN intersect at Q.  Find PQ/FH.

 
 Jan 6, 2025
 #1
avatar+130071 
+1

Triangle HQN  similar to triangle FQG          Triangle MPF  similar to triangle GPH

HQ / HN  = FQ / FG                                       MF / PF = GH / PH                    

HQ / 1  =  FQ / 2                                           1 / PF = 2 / PH                                        

HQ/FQ   = 1/2                                                 PF / PH= 1/2 

 

HQ = (1/3)FH   

PF = ( 1/3)FH

 

PQ = FH - PF - HQ  =  FH - (1/3)FH - (1/3)FH =  (1/3)FH

PQ / FH   = (1/3)FH / FH = 1/3

 

 

cool cool cool

 Jan 6, 2025

2 Online Users