+0  
 
0
16
1
avatar+1911 

A spherical ball fits snugly inside a cylindrical jar, so that the ball touches the top and bottom of the jar, and the sides of the jar.  The volume of the cylinder is $144 \pi.$  What is the difference between the surface area of the sphere and the lateral surface area of the cylinder?

 Mar 3, 2024

Best Answer 

 #1
avatar+15001 
+1

What is the difference between the surface area of the sphere and the lateral surface area of the cylinder?

Hello tomtom!

 

\(V_c =\pi r^2\cdot 2r=2\pi r^3=144\\ r=(\dfrac{72}{\pi })^{\frac{1}{3}}\)

 

\(LS_c=2\pi r^2+2\pi r\cdot 2r=2\pi r^2(1+2)=6\pi r^2\\ SA_s=4\pi r^2\\ LS_c-SA_s= 2\pi r^2=2\pi \cdot (\dfrac{72}{\pi })^{\frac{2}{3}} \\ \color{blue}LS_c-SA_s=50.6954\)

 

The surface area of the sphere and the lateral surface area of the cylinder is 50.6954.

 

laugh !

 Mar 3, 2024
edited by asinus  Mar 3, 2024
edited by asinus  Mar 3, 2024
 #1
avatar+15001 
+1
Best Answer

What is the difference between the surface area of the sphere and the lateral surface area of the cylinder?

Hello tomtom!

 

\(V_c =\pi r^2\cdot 2r=2\pi r^3=144\\ r=(\dfrac{72}{\pi })^{\frac{1}{3}}\)

 

\(LS_c=2\pi r^2+2\pi r\cdot 2r=2\pi r^2(1+2)=6\pi r^2\\ SA_s=4\pi r^2\\ LS_c-SA_s= 2\pi r^2=2\pi \cdot (\dfrac{72}{\pi })^{\frac{2}{3}} \\ \color{blue}LS_c-SA_s=50.6954\)

 

The surface area of the sphere and the lateral surface area of the cylinder is 50.6954.

 

laugh !

asinus Mar 3, 2024
edited by asinus  Mar 3, 2024
edited by asinus  Mar 3, 2024

4 Online Users