+0  
 
0
3
3
avatar+911 

We cut a regular octagon ABCDEFGH out of a piece of cardboard.  If $AB = 1$, then what is the area of the octagon?

 
 Dec 31, 2024

Best Answer 

 #2
avatar+130042 
+1

We can  divide the octagon into 8 congruent triangles

 

AB = the base of each = 1

 

Height = h   of each triangle  can be found as

 

(1/2) / sin (22.5°)  =  h / sin (67.5 °)

 

(1/2) / sin (22.5°) = h / cos (22.5°)

 

h = (1/2) cos (22.5°) / sin (22.5°)   

 

h = (1/2) cot (22.5°) ≈ 1.207

 

Area =  8 (1/2) (1) (1.207)  ≈  4.828

 

cool cool cool

 Jan 1, 2025
 #1
avatar+518 
0

The area of the octagon is 4*sqrt(2) + 4.

 Dec 31, 2024
 #2
avatar+130042 
+1
Best Answer

We can  divide the octagon into 8 congruent triangles

 

AB = the base of each = 1

 

Height = h   of each triangle  can be found as

 

(1/2) / sin (22.5°)  =  h / sin (67.5 °)

 

(1/2) / sin (22.5°) = h / cos (22.5°)

 

h = (1/2) cos (22.5°) / sin (22.5°)   

 

h = (1/2) cot (22.5°) ≈ 1.207

 

Area =  8 (1/2) (1) (1.207)  ≈  4.828

 

cool cool cool

CPhill Jan 1, 2025
 #3
avatar+1297 
0

 

We cut a regular octagon ABCDEFGH out of a piece of cardboard.    

If $AB = 1$, then what is the area of the octagon?    

 

There's a formula for the area of a regular octagon in terms of its side "s" 

 

A  =  2s2 (1 + sqrt(2))    

 

A  =  (2)(12)(1 + 1.414)    

 

A  =  (2)(2.414)    

 

A  =  4.828     same as Chris ... I knew it would be.    

.    

 Jan 1, 2025

4 Online Users

avatar