+0  
 
0
6
1
avatar+380 

In parallelogram EFGH, let M be the point on \overline{EF} such that FM:ME = 1:1, and let N be the point on \overline{EH} such that HN:NE = 1:1. Line segments \overline{FH} and \overline{GM} intersect at P, and line segments \overline{FH} and GN intersect at Q.  Find PQ/FH.

 Dec 7, 2024
 #1
avatar+130081 
+1

 

 

Triangle HQN sinilar to triangle FQG           Triangle MPF similar to triangle GPH

HQ/HN = FQ/FG                                                MF/PF = GH/PH                                       

HQ/2 = FQ/4                                                       2/PF = 4/PH

HQ/FQ = 2/4 = 1/2                                              PF/PH = 2/4 = 1/2

 

HQ = ( 1/3)FH

PF = (1/3)FH

 

FH - HQ - PF  = PQ

FH - (1/3)FH - (1/3)FH = (1/3)FH = PQ

 

PQ / FH =  (1/3)FH / FH  = 1/3  

 

cool cool cool                                                   

 Dec 7, 2024

0 Online Users