+0  
 
0
91
1
avatar

Rectangle ABCD contains a point X such that AX = 1, BX = 7, CX = \(7\).  Find DX.

 Apr 4, 2022
 #1
avatar+23198 
0

In triangle(XBC):  since BX = CX, this triangle is isosceles.

 

Therefore, angle(XBC) = angle(XCB).

 

Since ABCD is a rectangle, angle(B) and angle(C) are right angles.

 

Therefore, angle(ABX) = angle(DCX).

 

Triangle(ABX) is congruent to triangle(DCX):by SAS, making AX = DX.

 Apr 4, 2022

28 Online Users

avatar