+0  
 
0
261
1
avatar+284 

14. Given: ∠1 , ∠2 , ∠3 , and ∠4 formed by two intersecting segments.

 

Prove: ∠1 and ∠3 are congruent.

 

Drag the answers into the boxes to correctly complete the proof.

Statement                                                                                       Reason

 

∠1 , ∠2 , ∠3 , and ∠4 formed by two intersecting segments.            Given

 

∠1 and ∠2 form a linear pair.                                              Definition of linear pair

 

∠2 and ∠3 form a linear pair.                                              Definition of linear pair

                                                                        

​​ ​ m∠1+m∠2=180° ​                                                         Linear Pair Postulate

​​                                                                                                 

​​_____________________

 

​ m∠1+m∠2=m∠2+m∠3 ​                                              ________________________

 

                                                                         

___________________________                         ​​Subtraction Property of Equality

 

 

 

ANSWER CHOICES

Substitution Property of Equality

Linear Pair Postulate

Addition Property of Equality​ 

​m∠2+m∠3=180°​​​​ ​

m∠1=m∠3​

sii1lver  Jan 7, 2018

Best Answer 

 #1
avatar+7266 
+2
Statement

                 

Reason

∠1, ∠2, ∠3, and ∠4 formed by

two intersecting segments.

 

 

 

Given
∠1 and ∠2 form a linear pair.

 

Definition of linear pair
∠2 and ∠3 form a linear pair.

 

 

Definition of linear pair
m∠1 + m∠2  =  180°

 

Linear Pair Postulate
m∠2 + m∠3  =  180°​​​​ 

 

 

Linear Pair Postulate
m∠1 + m∠2  =  m∠2 + m∠3 ​ 

 

Substitution Property of Equality
m∠1  =  m∠3​

 

 

Subtraction Property of Equality
hectictar  Jan 7, 2018
edited by hectictar  Jan 8, 2018
 #1
avatar+7266 
+2
Best Answer
Statement

                 

Reason

∠1, ∠2, ∠3, and ∠4 formed by

two intersecting segments.

 

 

 

Given
∠1 and ∠2 form a linear pair.

 

Definition of linear pair
∠2 and ∠3 form a linear pair.

 

 

Definition of linear pair
m∠1 + m∠2  =  180°

 

Linear Pair Postulate
m∠2 + m∠3  =  180°​​​​ 

 

 

Linear Pair Postulate
m∠1 + m∠2  =  m∠2 + m∠3 ​ 

 

Substitution Property of Equality
m∠1  =  m∠3​

 

 

Subtraction Property of Equality
hectictar  Jan 7, 2018
edited by hectictar  Jan 8, 2018

29 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.