Given a triangle with a =19, A = 43°, and B =26°, what is the length of c? Round to the nearest tenth
a = 19
A = 43°
B = 26°
I know the problem says to find the length of c; however, angle C and length b can also be found using the Law of Sines and that a traingle is equal to 180°.
\(\frac{sin(A)}{a}=\frac{sin(B)}{b}=\frac{sin(C)}{c}\)
To find angle C, subtract angles A and B from 180°.
\(C=180°-43°-26°\)
\(C=137°-26°\)
\(C=111°\)
Now I will find length b.
\(\frac{sin(43°)}{19}=\frac{sin(26°)}{b}\)
\(19b\times\frac{sin(43°)}{19}=19b\times\frac{sin(26°)}{b}\)
\(sin(43°)b=19sin(26°)\)
\(\frac{sin(43°)b}{sin(43°)}=\frac{19sin(26°)}{sin(43°)}\)
\(b=\frac{19sin(26°)}{sin(43°)}\)
\(b≈\frac{19\times0.438371146789}{sin(43°)}\)
\(b≈\frac{8.329051788991}{sin(43°)}\)
\(b≈\frac{8.329051788991}{0.681998360062}\)
\(b≈12.2127152743209113\)
\(b≈12.2\)
Now I will length c.
\(\frac{sin(43°)}{19}=\frac{sin(111°)}{c}\)
\(19c\times\frac{sin(43°)}{19}=19c\times\frac{sin(111°)}{c}\)
\(sin(43°)c=19sin(111°)\)
\(\frac{sin(43°)c}{sin(43°)}=\frac{19sin(111°)}{sin(43°)}\)
\(c=\frac{19sin(111°)}{sin(43°)}\)
\(c≈\frac{19\times0.933580426497}{sin(43°)}\)
\(c≈\frac{17.738028103443}{sin(43°)}\)
\(c≈\frac{17.738028103443}{0.681998360062}\)
\(c≈ 26.0089014023881936\)
\(c≈26.0\)
A = 43°
B = 26°
C = 111°
a = 19
b ≈ 12.2
c ≈ 26.0