Given a triangle with C=108°, a=10, b=6.5, find side c
$$c^2=a^2+b^2-2ab*\cos(108\ensurement{^{\circ}}) \\
c^2 = 10^2+6.5^2-2*10*6.5*\cos(108\ensurement{^{\circ}}) \\
c^2 = 100 +42.25 - 130 * (-0.30901699437) \\
c^2 = 142.25 + 40.1722092687\\
c^2 = 182.422209269 \quad | \qaud \sqrt{} \\
c= 13.5$$
Using the Law of Cosines, we have
C^2 =
$${{\mathtt{10}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{6.5}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{6.5}}\right){\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{108}}^\circ\right)} = {\mathtt{182.422\: \!209\: \!268\: \!75}}$$
C =
$${\sqrt{{\mathtt{182.422\: \!209\: \!268\: \!75}}}} = {\mathtt{13.506\: \!376\: \!615\: \!093\: \!701\: \!7}}$$
Given a triangle with C=108°, a=10, b=6.5, find side c
$$c^2=a^2+b^2-2ab*\cos(108\ensurement{^{\circ}}) \\
c^2 = 10^2+6.5^2-2*10*6.5*\cos(108\ensurement{^{\circ}}) \\
c^2 = 100 +42.25 - 130 * (-0.30901699437) \\
c^2 = 142.25 + 40.1722092687\\
c^2 = 182.422209269 \quad | \qaud \sqrt{} \\
c= 13.5$$