We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
77
2
avatar+-6 

Given f(x)=3x2+10x−8 and g(x)=3x2−2x .

What is (f/g)(x) ?

−5x+4/x where x≠0, 2/3

x/−5x+4 where x≠0, 4/5

x/x+4 where x≠0, 4

x+4/x where x≠0, 2/3

 May 13, 2019
edited by BellaNight7310  May 13, 2019
 #1
avatar-6 
+2

 

  x+4/x where x≠0, 2/3

The last answer is correct

 May 13, 2019
 #2
avatar+8577 
+3

Given    \(f(x)=3x^2+10x-8\)    and    \(g(x)=3x^2-2x\)

What is \((\frac{f}{g})(x)\)   ?

--------------------------

 

\((\frac{f}{g})(x)\,=\,\frac{f(x)}{g(x)}\)

                                              Substitute  \(3x^2+10x-8\)  in for  \(f(x)\)  and substitute  \(3x^2-2x\)  in for  \(g(x)\)

\((\frac{f}{g})(x)\,=\,\frac{3x^2+10x-8}{3x^2-2x}\)

                                              Split  10x  into two terms such that their coefficients add to  10  and multiply to  -24

\((\frac{f}{g})(x)\,=\,\frac{3x^2+12x-2x-8}{3x^2-2x}\)

                                              Factor the numerator and denominator.

\((\frac{f}{g})(x)\,=\,\frac{3x(x+4)-2(x+4)}{3x^2-2x}\\~\\ (\frac{f}{g})(x)\,=\,\frac{(x+4)(3x-2)}{x(3x-2)} \)

                                              Cancel the common factor of  (3x -2)  and note that  3x - 2 ≠ 0 , that is,  x  ≠  2/3

 

\( (\frac{f}{g})(x)\,=\,\frac{x+4}{x}\qquad\text{and}\qquad x\neq\frac23\)

 

Since  x  is in the denominator we can also note that  x ≠ 0

 May 14, 2019

5 Online Users