Given f(x)=2x−3x+1, find the value of a such that f(3a−2)=1.
f(x)=2x−3x+1 f(3a−2)=2(3a−2)−3(3a−2)+1 f(3a−2) = 1 2(3a−2)−3(3a−2)+1 = 1 6a−4−33a−2+1 = 1 6a−73a−1 = 1 6a−7 = 1(3a−1)and3a−1≠0 6a−7 = 3a−1and3a−1≠0 6a−3a = 7−1and3a−1≠0 3a = 6and3a−1≠0 a = 2anda≠13 a = 2