given formula A = P(1+R)* find the value of P is A=9750, R= 0.05 and *=7 NOTE: * symbolises n
Okay let me rephrase this to
$$A = P(1+r)^n$$
where A = 9750, r = 0.05 and n = 7
Then we can rewrite this to $$P = \frac{A}{(1+r)^n}$$
filling in the variables gives $${\mathtt{P}} = {\frac{{\mathtt{9\,750}}}{\left({{\mathtt{1.05}}}^{{\mathtt{7}}}\right)}} \Rightarrow {\mathtt{P}} = {\mathtt{6\,929.142\: \!968\: \!768\: \!685\: \!314\: \!7}}$$
Okay let me rephrase this to
$$A = P(1+r)^n$$
where A = 9750, r = 0.05 and n = 7
Then we can rewrite this to $$P = \frac{A}{(1+r)^n}$$
filling in the variables gives $${\mathtt{P}} = {\frac{{\mathtt{9\,750}}}{\left({{\mathtt{1.05}}}^{{\mathtt{7}}}\right)}} \Rightarrow {\mathtt{P}} = {\mathtt{6\,929.142\: \!968\: \!768\: \!685\: \!314\: \!7}}$$