+0  
 
0
3459
1
avatar

Given the parametric equations below, eliminate the parameter t to obtain an equation for y as a function of x {(x(t) = 7 sqrt(t)),(y(t) = 5 t + 2):}

y(x) =?

difficulty advanced
 Jun 4, 2015

Best Answer 

 #1
avatar+130560 
+10

x(t) = 7√t   →    √t = x /7   → t = x^2 / 49

 

y(t) = 5t + 2         and substituting, we have   

 

y(x)  =  (5/49)x^2 + 2  .

 

Notice that we must restrict the domain of this function to  x ≥ 0....the reason for this is that x(t) in the original parametric equation isn't defined for  t < 0

 

Here's a graph of both forms......https://www.desmos.com/calculator/abugghcton

 

 

 

 

 Jun 4, 2015
 #1
avatar+130560 
+10
Best Answer

x(t) = 7√t   →    √t = x /7   → t = x^2 / 49

 

y(t) = 5t + 2         and substituting, we have   

 

y(x)  =  (5/49)x^2 + 2  .

 

Notice that we must restrict the domain of this function to  x ≥ 0....the reason for this is that x(t) in the original parametric equation isn't defined for  t < 0

 

Here's a graph of both forms......https://www.desmos.com/calculator/abugghcton

 

 

 

 

CPhill Jun 4, 2015

0 Online Users