+0  
 
+5
434
2
avatar+62 

if $$f(x)=2x-7,g(x)=\sqrt{3x-2},x\geq 2$$ then

$$(f^{-1}o g^{-1})(5)=?$$

$$(g^{-1}o f^{-1})(-3)=?$$

 Jan 13, 2015

Best Answer 

 #1
avatar+96302 
+10

Let's find the inverse of both functions

y = 2x - 7  add 7 to both sides                             y= √(3x - 2)   square both sides

y + 7 = 2x     divide both sides by 2                     y^2  = 3x - 2   add 2 to both sides

(y + 7) / 2  = x     exchange x with y                   y^2 + 2 = 3x   divide both sides by 3

(x + 7) / 2  = y  = f-1(x)                                     ( y^2 + 2) / 3  = x     exchange x and y

                                                                         (x^2 + 2 ) / 3  = y = g-1(x)

And g-1(5)   = (25 + 2) / 3 = 9

So   f-1 (g-1(5))  =  f-1 (9) = (9 + 7) / 2  = 16 / 2 = 8

 

And f-1 (-3) = ( -3 + 7) / 2  = 4 / 2 = 2

So g-1 (f-1(-3)) = g-1 (2)  =  (2^2 + 2 ) / 3  = (6) / 3  = 2

 

 Jan 13, 2015
 #1
avatar+96302 
+10
Best Answer

Let's find the inverse of both functions

y = 2x - 7  add 7 to both sides                             y= √(3x - 2)   square both sides

y + 7 = 2x     divide both sides by 2                     y^2  = 3x - 2   add 2 to both sides

(y + 7) / 2  = x     exchange x with y                   y^2 + 2 = 3x   divide both sides by 3

(x + 7) / 2  = y  = f-1(x)                                     ( y^2 + 2) / 3  = x     exchange x and y

                                                                         (x^2 + 2 ) / 3  = y = g-1(x)

And g-1(5)   = (25 + 2) / 3 = 9

So   f-1 (g-1(5))  =  f-1 (9) = (9 + 7) / 2  = 16 / 2 = 8

 

And f-1 (-3) = ( -3 + 7) / 2  = 4 / 2 = 2

So g-1 (f-1(-3)) = g-1 (2)  =  (2^2 + 2 ) / 3  = (6) / 3  = 2

 

CPhill Jan 13, 2015
 #2
avatar+97586 
+5

Looks mind goggling. Thanks Chris  

 Jan 14, 2015

36 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.