+0  
 
+5
626
5
avatar

Good evening !

What would be the answer of : dx/dt * x2 = e2t
 It would be great of you to answer !

Thks and happy new year

Guest Dec 30, 2015

Best Answer 

 #3
avatar+93691 
+5

Thanks Guest, 

I just want to play too.    laugh

 

\(\frac{dx}{dt} * x^ 2 = e^{2t}\\ x^2\frac{dx}{dt} = e^{2t}\\ \int x^2\frac{dx}{dt}\;dt = \int e^{2t}\;dt\\ \int x^2\;dx = \int e^{2t}\;dt\\ \frac{x^3}{3} = \frac{ e^{2t}}{2}+c_1\\ x^3 = \frac{ 3e^{2t}}{2}+c_2\\ x=\left [\frac{ 3e^{2t}+c_3}{2}\right]^{1/3}\\\)

 

Last line has been edited.

Melody  Jan 1, 2016
edited by Melody  Jan 1, 2016
 #1
avatar
+10

Solve the separable equation x(t)^2 ( dx(t))/( dt) = e^(2 t):
Integrate both sides with respect to t:
integral ( dx(t))/( dt) x(t)^2 dt  =   integral e^(2 t)  dt
Evaluate the integrals:
x(t)^3/3  =  e^(2 t)/2+c_1
Solve for x(t):
x(t) = -((-3/2)^(1/3) (e^(2 t)+2 c_1)^(1/3)) or x(t) = (3/2)^(1/3) (e^(2 t)+2 c_1)^(1/3) or x(t) = (-1)^(2/3) (3/2)^(1/3) (e^(2 t)+2 c_1)^(1/3)
Simplify the arbitrary constants:
Answer: | x(t) = -((-3/2)^(1/3) (e^(2 t)+c_1)^(1/3))           or x(t) = (3/2)^(1/3) (e^(2 t)+c_1)^(1/3) or x(t) = (-1)^(2/3) (3/2)^(1/3) (e^(2 t)+c_1)^(1/3)

Guest Dec 30, 2015
 #2
avatar
+5

Oups I feel super dumb haha thanks !

Guest Dec 30, 2015
 #3
avatar+93691 
+5
Best Answer

Thanks Guest, 

I just want to play too.    laugh

 

\(\frac{dx}{dt} * x^ 2 = e^{2t}\\ x^2\frac{dx}{dt} = e^{2t}\\ \int x^2\frac{dx}{dt}\;dt = \int e^{2t}\;dt\\ \int x^2\;dx = \int e^{2t}\;dt\\ \frac{x^3}{3} = \frac{ e^{2t}}{2}+c_1\\ x^3 = \frac{ 3e^{2t}}{2}+c_2\\ x=\left [\frac{ 3e^{2t}+c_3}{2}\right]^{1/3}\\\)

 

Last line has been edited.

Melody  Jan 1, 2016
edited by Melody  Jan 1, 2016
 #4
avatar
0

You might want to take another look at that last line Melody.

Bertie

Guest Jan 1, 2016
 #5
avatar+93691 
0

Thanks Bertie,

I think it is better now ?

 

Melody  Jan 1, 2016

22 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.