if a + bi = p + i / 2q - i , prove that a^2 + b^2 = ( p^2 + 1 ) /4q^2 + 1.
thanks in advance!
if a + bi = p + i / 2q - i , prove that a^2 + b^2 = ( p^2 + 1 ) /4q^2 + 1.
a+bi=p+i2q−ia+bi=p+i2q−i×2q+i2q+ia+bi=2pq+(p+2q)i−14q2+1a+bi=2pq−14q2+1+(p+2q)i4q2+1soa=2pq−14q2+1andb=(p+2q)4q2+1 a2+b2=(2pq−1)2+(p+2q)2(4q2+1)2
a2+b2=(2pq−1)2+(p+2q)2(4q2+1)2a2+b2=(4p2q2−4pq+1)+(p2+4pq+4q2)(4q2+1)2a2+b2=4p2q2+p2+4q2+1(4q2+1)2a2+b2=(4q2+1)(p2+1)(4q2+1)2a2+b2=p2+14q2+1 QED
Hi Rosala,
a + bi = p + i / 2q - i , prove that a^2 + b^2 = ( p^2 + 1 ) /4q^2 + 1.
The accurate interpretation of this is
a+bi=p+i2q−i , prove that a2+b2=(p2+1)4q2+1
BUT
Do you mean this one underneath, or something differnent again?
if a+bi=p+i2q−i, prove that a2+b2=(p2+1)4q2+1
if a + bi = p + i / 2q - i , prove that a^2 + b^2 = ( p^2 + 1 ) /4q^2 + 1.
a+bi=p+i2q−ia+bi=p+i2q−i×2q+i2q+ia+bi=2pq+(p+2q)i−14q2+1a+bi=2pq−14q2+1+(p+2q)i4q2+1soa=2pq−14q2+1andb=(p+2q)4q2+1 a2+b2=(2pq−1)2+(p+2q)2(4q2+1)2
a2+b2=(2pq−1)2+(p+2q)2(4q2+1)2a2+b2=(4p2q2−4pq+1)+(p2+4pq+4q2)(4q2+1)2a2+b2=4p2q2+p2+4q2+1(4q2+1)2a2+b2=(4q2+1)(p2+1)(4q2+1)2a2+b2=p2+14q2+1 QED