We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
35
3
avatar

Please help and show work. I've been stuck on these. I really need to understand how to do these. Thanks. 

 May 8, 2019
 #1
avatar+100519 
+1

If UT is a perpendicular bisector of NW....T must be the midpoint of  NW

So....the midpoint of NW  =

 

[ (-4 + 2) / 2 , ( 3 + 5) / 2 ]  =   (-2/2 , 8/2) = (-1, 4)  = T

 

Check this.....slope of NW  =   [ 5 - 3] / [ 2 - - 4 ]  =  2 / 6  =  1/3

 

Slope of  UT  =  [ 1 - 4 ]/  [ 0, -  -1]   =  -3/1  =  -3

 

Since NW and UT have negative reciprocal slopes....they are also perpendicular

 

 

cool cool cool

 May 8, 2019
 #2
avatar+100519 
+1

Second  one.....we have the points  (-2, - 2)    (-1, 3) (2, 2)

 

Distance between   (-2, -2)  and (-1, 3)  =  sqrt [ ( -2 - - 1)^2 + (-2 - 3)^2 ] = sqrt [ (-1)^2 + (-5)^2 ] =

sqrt [ 1 + 25]  =  sqrt (26)

 

Distance between (-2, -2)  and (2, 2)  = sqrt [ ( -2 - 2)^2 + (-2 - 2)^2 ]  = sqrt [ (-4)^2 + (-4)^2 ] =

sqrt [ 16 + 16 ]  =  sqrt (32)  =  4sqrt(2)

 

Distance between  (-1,3)  and (2, 2)  = sqrt [ ( -1 - 2)^2 + ( 3 - 2)^2 ]  = sqrt [ (-3)^2 + (1)^2 ]  =

sqrt [ 9 + 1 ]  =  sqrt(10)

 

So.....the perimeter  =     sqrt (26) + 4sqrt(2) + sqrt(10) ≈  13.92 units

 

 

cool cool cool

 May 8, 2019
 #3
avatar
+1

Thank you so much for your help! I truly appreciate it!!

Guest May 8, 2019

7 Online Users