+0

# Graph the image of the figure after a dilation with a scale factor of 2 centered at (−2, −2) .

+1
136
1

Graph the image of the figure after a dilation with a scale factor of 2 centered at (−2, −2) .

Guest Jan 26, 2018
Sort:

#1
+19207
+1

Graph the image of the figure after a dilation with a scale factor of 2 centered at (−2, −2) .

$$\begin{array}{lrcll} \text{Formula dilation:} & \boxed{\vec{A}' = (\vec{A}-\vec{C_{Center}})\cdot \lambda +\vec{C_{Center}}} \\ & \vec{A} \text{ before dilation } & \text{\lambda scale factor } = 2 \\ & \vec{A}' \text{ after dilation } & \text{\vec{C_{Center}} center at \binom{-2}{-2}  } \\ \end{array}$$

$$\begin{array}{lrcll} &\vec{A}' &=& (\vec{A}-\vec{C_{Center}})\cdot \lambda +\vec{C_{Center}}\\ & &=& \vec{A}\cdot \lambda +\vec{C_{Center}}\cdot (1-\lambda ) \\ & &=& \lambda \cdot \vec{A} +(1-\lambda )\cdot \vec{C_{Center}} \\ \text{Formula dilation:} & \boxed{\vec{A}' =\lambda \cdot \vec{A} +(1-\lambda )\cdot \vec{C_{Center}}} \\ & (1-\lambda )\cdot \vec{C_{Center}} &=& (1-2)\binom{-2}{-2} \\ & (1-\lambda )\cdot \vec{C_{Center}} &=& (-1)\binom{-2}{-2} \\ & (1-\lambda )\cdot \vec{C_{Center}} &=& \binom{2}{2} \\ \end{array}$$

$$\begin{array}{lrcll} \boxed{\vec{A}'=\lambda \cdot \vec{A} +\binom{2}{2}}& \vec{A} = \dbinom{-4}{-2}\\ \boxed{\vec{B}'=\lambda \cdot \vec{B} +\binom{2}{2}}& \vec{B} = \dbinom{-5}{2}\\ \boxed{\vec{C}'=\lambda \cdot \vec{C} +\binom{2}{2}}& \vec{C} = \dbinom{-1}{3}\\ \boxed{\vec{D}'=\lambda \cdot \vec{D} +\binom{2}{2}}& \vec{D}= \dbinom{1}{1}\\ \end{array}$$

$$\begin{array}{lrcll} \boxed{\vec{A}'=2 \cdot \binom{-4}{-2} +\binom{2}{2}}& \vec{A}' = \dbinom{-6}{-2}\\ \boxed{\vec{B}'=2 \cdot \binom{-5}{2} +\binom{2}{2}}& \vec{B}' = \dbinom{-8}{6}\\ \boxed{\vec{C}'=2 \cdot \binom{-1}{3} +\binom{2}{2}}& \vec{C}' = \dbinom{0}{8}\\ \boxed{\vec{D}'=2 \cdot \binom{1}{1} +\binom{2}{2}}& \vec{D}' = \dbinom{4}{4}\\ \end{array}$$

Point (-4, -2 ) goes to (-6,-2)

Point (-5, 2) goes to (-8. 6)

Point ( -1, 3) goes to (0, 8)

Point ( 1, 1 ) goes to (4, 4 )

heureka  Jan 26, 2018
edited by heureka  Jan 26, 2018

### 14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details