We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
490
1
avatar

Graph the image of the figure after a dilation with a scale factor of 2 centered at (−2, −2) .

 Jan 26, 2018
 #1
avatar+22273 
+1

Graph the image of the figure after a dilation with a scale factor of 2 centered at (−2, −2) .

 

 

\(\begin{array}{lrcll} \text{Formula dilation:} & \boxed{\vec{A}' = (\vec{A}-\vec{C_{Center}})\cdot \lambda +\vec{C_{Center}}} \\ & \vec{A} \text{ before dilation } & \text{$\lambda$ scale factor } = 2 \\ & \vec{A}' \text{ after dilation } & \text{$\vec{C_{Center}}$ center at $\binom{-2}{-2} $ } \\ \end{array} \)

 

\(\begin{array}{lrcll} &\vec{A}' &=& (\vec{A}-\vec{C_{Center}})\cdot \lambda +\vec{C_{Center}}\\ & &=& \vec{A}\cdot \lambda +\vec{C_{Center}}\cdot (1-\lambda ) \\ & &=& \lambda \cdot \vec{A} +(1-\lambda )\cdot \vec{C_{Center}} \\ \text{Formula dilation:} & \boxed{\vec{A}' =\lambda \cdot \vec{A} +(1-\lambda )\cdot \vec{C_{Center}}} \\ & (1-\lambda )\cdot \vec{C_{Center}} &=& (1-2)\binom{-2}{-2} \\ & (1-\lambda )\cdot \vec{C_{Center}} &=& (-1)\binom{-2}{-2} \\ & (1-\lambda )\cdot \vec{C_{Center}} &=& \binom{2}{2} \\ \end{array}\)

 

\(\begin{array}{lrcll} \boxed{\vec{A}'=\lambda \cdot \vec{A} +\binom{2}{2}}& \vec{A} = \dbinom{-4}{-2}\\ \boxed{\vec{B}'=\lambda \cdot \vec{B} +\binom{2}{2}}& \vec{B} = \dbinom{-5}{2}\\ \boxed{\vec{C}'=\lambda \cdot \vec{C} +\binom{2}{2}}& \vec{C} = \dbinom{-1}{3}\\ \boxed{\vec{D}'=\lambda \cdot \vec{D} +\binom{2}{2}}& \vec{D}= \dbinom{1}{1}\\ \end{array}\)

 

\(\begin{array}{lrcll} \boxed{\vec{A}'=2 \cdot \binom{-4}{-2} +\binom{2}{2}}& \vec{A}' = \dbinom{-6}{-2}\\ \boxed{\vec{B}'=2 \cdot \binom{-5}{2} +\binom{2}{2}}& \vec{B}' = \dbinom{-8}{6}\\ \boxed{\vec{C}'=2 \cdot \binom{-1}{3} +\binom{2}{2}}& \vec{C}' = \dbinom{0}{8}\\ \boxed{\vec{D}'=2 \cdot \binom{1}{1} +\binom{2}{2}}& \vec{D}' = \dbinom{4}{4}\\ \end{array} \)

 

Point (-4, -2 ) goes to (-6,-2)

Point (-5, 2) goes to (-8. 6)

Point ( -1, 3) goes to (0, 8)

Point ( 1, 1 ) goes to (4, 4 )

 

 

laugh

 Jan 26, 2018
edited by heureka  Jan 26, 2018

13 Online Users

avatar
avatar