+0

# Gravitation

0
621
7
+869

The mass of the Earth is 5.972×1024 kg

Calculate the intensity of gravity on the Earth.

HINT: $$g=\frac{m \cdot G}{r^2}$$

g stands for gravity

m stands for mass

G is a constant and is equal to 6.67×10-11 N•m2•kg-2

Apr 30, 2015

#6
+20831
+5

P.S.

$$\small{\text{Newton's Law of Gravitation: }} F=\boxed{\,G*\frac{m_1*m_2}{r^2}=m_2*g\,} \Rightarrow \boxed{\, g=\frac{m \cdot G}{r^2} \,}$$

.
May 4, 2015

#1
+20831
+5

$$\boxed{ g=\dfrac{m \cdot G}{r^2} }$$

$$\\\small{\text{g_{earth}=G*\dfrac{m_{earth}}{r_{earth}^2}\qquad G= 6.673 * 10^{-11} * \frac { N*\ m^2 } { kg^2 } \qquad m_{earth}=5.972\cdot 10^{24}\ kg\qquad r_{earth}=6.371\cdot 10^6\ m}}\\\\ \small{\text{g_{earth}=6.673 \cdot 10^{-11}*\dfrac{ 5.972\cdot 10^{24} }{ ( 6.371\cdot 10^6 )^2}\cdot \frac{N\cdot \ m^2 \cdot\ kg}{ kg^2\cdot\ m^2 } = \dfrac{ 6.673\cdot 5.972\cdot 10^{-11+24-12}} { 6.371^2 } \cdot \frac { N } { kg } }}\\\\ \small{\text{g_{earth}= \dfrac{ 6.673\cdot 5.972\cdot 10^{1}} { 6.371^2 } \cdot \frac { \dfrac{kg\cdot \ m }{s^2} } { kg } }}\\\\ \small{\text{g_{earth}= 9.81806072145\cdot \dfrac{ m }{s^2}}}$$

.
Apr 30, 2015
#2
+869
+5

Congratulations ! You earned a cookie:

Apr 30, 2015
#3
+95177
0

Can Heureka have  smaller cookie next time please.  That one choked up my computer and it gave Heureka a belly ache

Apr 30, 2015
#4
+95177
+5

SO

The gravitational force between two objects is        $$F=\frac{Gm_1m_2}{r^2}$$

but

If you want the intensity of gravity for the Earth it is just     $$g=\frac{Gm_E}{r^2}$$

That actually does make sense I think :/

Apr 30, 2015
#5
+869
+5

Sorry, that was the smallest cookie I had under the hand I'll try to find a smaller one.

Apr 30, 2015
#6
+20831
+5

P.S.

$$\small{\text{Newton's Law of Gravitation: }} F=\boxed{\,G*\frac{m_1*m_2}{r^2}=m_2*g\,} \Rightarrow \boxed{\, g=\frac{m \cdot G}{r^2} \,}$$

heureka May 4, 2015
#7
+95177
0

Thanks Heureka

May 4, 2015