+0  
 
0
1
2
avatar+363 

In rectangle $WXYZ$, $A$ is on side $\overline{WX}$, $B$ is on side $\overline{YZ}$, and $C$ is on side $\overline{XY}$. If $AX = 2$, $BY = 16$, $\angle ACB = 90^\circ$, and $CY = 2 \cdot CX$, then find $AB$.

 
 Jan 11, 2025
 #2
avatar+400 
0

Certainly, let's find the length of AB in rectangle WXYZ.

 

1. Define Variables

 

Let's denote:

 

WX = YZ = length = 'l'

 

XY = WZ = width = 'w'

 

CX = 'x'

 

CY = 2x

 

2. Utilize Given Information

 

AX = 2

 

BY = 16

 

∠ACB = 90°

 

3. Analyze Triangle ACB

 

Since ∠ACB = 90°, triangle ACB is a right-angled triangle.

 

We can apply the Pythagorean Theorem:

 

AC^2 + BC^2 = AB^2

 

4. Express AC and BC in terms of other variables

 

AC = AX + CX = 2 + x

 

BC = BY - CY = 16 - 2x

 

5. Substitute into the Pythagorean Theorem

 

(2 + x)^2 + (16 - 2x)^2 = AB^2

 

4 + 4x + x^2 + 256 - 64x + 4x^2 = AB^2

 

5x^2 - 60x + 260 = AB^2

 

6. Find the Relationship between Length and Width

 

In right-angled triangle ACB:

 

tan(∠CAB) = BC/AC

 

tan(∠CAB) = (16 - 2x) / (2 + x)

 

In right-angled triangle CXY:

 

tan(∠CXY) = CY/CX

 

tan(∠CXY) = 2x / x = 2

 

Since XY || WZ, ∠CAB = ∠CXY

 

Therefore, (16 - 2x) / (2 + x) = 2

 

7. Solve for 'x'

 

16 - 2x = 2(2 + x)

 

16 - 2x = 4 + 2x

 

12 = 4x

 

x = 3

 

8. Calculate AB

 

Substitute the value of 'x' in the equation for AB^2:

 

AB^2 = 5(3)^2 - 60(3) + 260

 

AB^2 = 45 - 180 + 260

 

AB^2 = 125

 

AB = √125

 

AB = 5√5

 

Therefore, the length of AB is 5√5.

 18 mins ago

1 Online Users