+0  
 
0
138
2
avatar

Given that \(f(x) = x^k\) where \(k > 0\), what is the range of \(f(x)\) on the interval \([1, \infty)\)?

 

I don't know how to solve this. I am not that good at functions.

I saw a previus answer, \((0,1]\) and it was wrong. 

 

THX IN ADVANCE

 Aug 17, 2019
 #1
avatar+6046 
+1

\(\text{if $k>0$ and $x>1$ then $x^k>x$}\\ \text{if $k>0$ and $x=1$ then $x^k=1$}\\ \text{so the range of $f(x)$ for $x \in [1,\infty)$ is $f(x) \in [1,\infty)$}\)

.
 Aug 18, 2019
 #2
avatar
+1

THX SO MUCH. laugh

 Aug 18, 2019

9 Online Users

avatar