1. Find constants A and B such that \(\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\) for all x such that x ≠ -1 and x ≠ 2. Give your answer as the ordered pair (B,C).

2. Suppose that \(|a - b| + |b - c| + |c - d| + \dots + |m-n| + |n-o| + \cdots+ |x - y| + |y - z| + |z - a| = 20.\) What is the maximum possible value of \(|a - n|\)?

Guest Jun 19, 2020