+0

# Halp!

0
534
3
+12

hi, Im new to this site, and I need help with this problem. Please respond ASAP!

Find the area of a triangle wih sides of 4/3, 2, and 8/3.

Put in sqrt pls! Dont round, just exact form using sqrtt

In triangle RST,RS=13 ST=14, and RT=15

Let M be the midpoint of ST. Find RM

Jun 30, 2017
edited by MeepMeep  Jun 30, 2017

#1
+1876
+1

I do not know how to solve the second problem; however, I can help solve the first problem.  To solve the first problem, use Heron's Formula.

$$A=\sqrt{\frac{a+b+c}{2}\times(\frac{a+b+c}{2}-a)\times(\frac{a+b+c}{2}-b)\times(\frac{a+b+c}{2}-c)}$$

A = Area

a = side a or $$\frac{4}{3}$$

b = side b or $$2$$

c = side c or $$\frac{8}{3}$$

$$A=\sqrt{\frac{\frac{4}{3}+2+\frac{8}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{\frac{4}{3}+\frac{6}{3}+\frac{8}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{\frac{10}{3}+\frac{8}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{\frac{18}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{\frac{18}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{\frac{4}{3}+\frac{6}{3}+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{\frac{10}{3}+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{\frac{18}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{6}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{18}{6}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{18}{6}-\frac{8}{6})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{10}{6})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{5}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times\frac{5}{3}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{3}{1}\times\frac{5}{3}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{15}{3}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{4}{3}+\frac{6}{3}+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{10}{3}+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{18}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{6}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(3-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(1)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times1\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{4}{3}+\frac{6}{3}+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{10}{3}+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{18}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{6}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(3-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{9}{3}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{1}{3})}$$

$$A=\sqrt{5\times\frac{1}{3}}$$

$$A=\sqrt{\frac{5}{1}\times\frac{1}{3}}$$

$$A=\sqrt{\frac{5}{3}}$$

.
Jul 1, 2017

#1
+1876
+1

I do not know how to solve the second problem; however, I can help solve the first problem.  To solve the first problem, use Heron's Formula.

$$A=\sqrt{\frac{a+b+c}{2}\times(\frac{a+b+c}{2}-a)\times(\frac{a+b+c}{2}-b)\times(\frac{a+b+c}{2}-c)}$$

A = Area

a = side a or $$\frac{4}{3}$$

b = side b or $$2$$

c = side c or $$\frac{8}{3}$$

$$A=\sqrt{\frac{\frac{4}{3}+2+\frac{8}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{\frac{4}{3}+\frac{6}{3}+\frac{8}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{\frac{10}{3}+\frac{8}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{\frac{18}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{\frac{18}{3}}{2}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{\frac{4}{3}+\frac{6}{3}+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{\frac{10}{3}+\frac{8}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{\frac{18}{3}}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{6}{2}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{18}{6}-\frac{4}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{18}{6}-\frac{8}{6})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{10}{6})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times(\frac{5}{3})\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{3\times\frac{5}{3}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{3}{1}\times\frac{5}{3}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{\frac{15}{3}\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{4}{3}+\frac{6}{3}+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{10}{3}+\frac{8}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{18}{3}}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{6}{2}-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(3-2)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(1)\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times1\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{4}{3}+2+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{4}{3}+\frac{6}{3}+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{10}{3}+\frac{8}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{\frac{18}{3}}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{6}{2}-\frac{8}{3})}$$

$$A=\sqrt{5\times(3-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{9}{3}-\frac{8}{3})}$$

$$A=\sqrt{5\times(\frac{1}{3})}$$

$$A=\sqrt{5\times\frac{1}{3}}$$

$$A=\sqrt{\frac{5}{1}\times\frac{1}{3}}$$

$$A=\sqrt{\frac{5}{3}}$$

gibsonj338 Jul 1, 2017
#3
+2298
0

Technically, $$\sqrt{\frac{5}{3}}$$ isn't completely simplified, so I'll simplify it; you did a lot of work for that problem...

 $$\sqrt{\frac{5}{3}}$$ "Distribute" the square root to the numerator and denominator. It follows the rule that $$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$$ $$\frac{\sqrt{5}}{\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}}$$ Because there is a radical in the denominator, you must rationalize it by multiplying the denominator by itself. Doing this gets rid of the radical in the denominator. $$\frac{\sqrt{5}*\sqrt{3}}{\sqrt{3}*\sqrt{3}}$$ In the denominator, multiplying by itself is the same as squaring it, which undoes the square root. $$\frac{\sqrt{5}*\sqrt{3}}{3}$$ Multiplying radicals is quite simple, actually. Just multiply the radicands (the number inside the radical) together. In general, $$\sqrt{a}*\sqrt{b}=\sqrt{a*b}$$ $$\frac{\sqrt{15}}{3}$$ The square root of 15 has no perfect-square factors and is therefore irreducible. No more simplification is possible.
TheXSquaredFactor  Jul 2, 2017
#2
+94360
+1

Here's # 2.......we need to manipulate the Law of Cosines twice.....

We can first  find  angle RST...so we have

[ RS^2  +ST^2 - RT^2] / [ 2(RS)(ST)] = cos RST

So

[13^2 + 14^2  - 15^2] / [ 2(13) (14) ]  =  cos RST

So

arcos  ( [13^2 + 14^2  - 15^2] / [ 2(13) (14) ] )  =  RST  ≈  67.38°

Since M is the mid-point of ST, then SM  = 7

Now manipulating the Law of Cosines again to find RM, we have that

RM  =  sqrt ( SM^2  + RS^2  - 2(SM)(RS) cos  67.38° )

RM =  sqrt ( 7^2  + 13^2 - 2 (7)(13) cos  67.38° ) ≈ 12.166

Here's an approximate pic :

Jul 1, 2017