Processing math: 100%
 
+0  
 
0
1299
3
avatar+12 

hi, Im new to this site, and I need help with this problem. Please respond ASAP!

Find the area of a triangle wih sides of 4/3, 2, and 8/3.

Put in sqrt pls! Dont round, just exact form using sqrtt

 

Please help with this problem too!

In triangle RST,RS=13 ST=14, and RT=15

Let M be the midpoint of ST. Find RM

 Jun 30, 2017
edited by MeepMeep  Jun 30, 2017

Best Answer 

 #1
avatar+1904 
+1

I do not know how to solve the second problem; however, I can help solve the first problem.  To solve the first problem, use Heron's Formula.

 

A=a+b+c2×(a+b+c2a)×(a+b+c2b)×(a+b+c2c)

 

A = Area

a = side a or 43

b = side b or 2

c = side c or 83

 

A=43+2+832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

A=43+63+832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

A=103+832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

A=1832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

 

A=1832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

 

A=3×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

A=3×(43+63+83243)×(43+2+8322)×(43+2+83283)

 

A=3×(103+83243)×(43+2+8322)×(43+2+83283)

 

A=3×(183243)×(43+2+8322)×(43+2+83283)

 

A=3×(6243)×(43+2+8322)×(43+2+83283)

 

A=3×(18643)×(43+2+8322)×(43+2+83283)

 

A=3×(18686)×(43+2+8322)×(43+2+83283)

 

A=3×(106)×(43+2+8322)×(43+2+83283)

 

A=3×(53)×(43+2+8322)×(43+2+83283)

 

A=3×53×(43+2+8322)×(43+2+83283)

 

A=31×53×(43+2+8322)×(43+2+83283)

 

A=153×(43+2+8322)×(43+2+83283)

 

A=5×(43+2+8322)×(43+2+83283)

 

A=5×(43+63+8322)×(43+2+83283)

 

A=5×(103+8322)×(43+2+83283)

 

A=5×(18322)×(43+2+83283)

 

A=5×(622)×(43+2+83283)

 

A=5×(32)×(43+2+83283)

 

A=5×(1)×(43+2+83283)

 

A=5×1×(43+2+83283)

 

A=5×(43+2+83283)

 

A=5×(43+63+83283)

 

A=5×(103+83283)

 

A=5×(183283)

 

A=5×(6283)

 

A=5×(383)

 

A=5×(9383)

 

A=5×(13)

 

A=5×13

 

A=51×13

 

A=53

 Jul 1, 2017
 #1
avatar+1904 
+1
Best Answer

I do not know how to solve the second problem; however, I can help solve the first problem.  To solve the first problem, use Heron's Formula.

 

A=a+b+c2×(a+b+c2a)×(a+b+c2b)×(a+b+c2c)

 

A = Area

a = side a or 43

b = side b or 2

c = side c or 83

 

A=43+2+832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

A=43+63+832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

A=103+832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

A=1832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

 

A=1832×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

 

A=3×(43+2+83243)×(43+2+8322)×(43+2+83283)

 

A=3×(43+63+83243)×(43+2+8322)×(43+2+83283)

 

A=3×(103+83243)×(43+2+8322)×(43+2+83283)

 

A=3×(183243)×(43+2+8322)×(43+2+83283)

 

A=3×(6243)×(43+2+8322)×(43+2+83283)

 

A=3×(18643)×(43+2+8322)×(43+2+83283)

 

A=3×(18686)×(43+2+8322)×(43+2+83283)

 

A=3×(106)×(43+2+8322)×(43+2+83283)

 

A=3×(53)×(43+2+8322)×(43+2+83283)

 

A=3×53×(43+2+8322)×(43+2+83283)

 

A=31×53×(43+2+8322)×(43+2+83283)

 

A=153×(43+2+8322)×(43+2+83283)

 

A=5×(43+2+8322)×(43+2+83283)

 

A=5×(43+63+8322)×(43+2+83283)

 

A=5×(103+8322)×(43+2+83283)

 

A=5×(18322)×(43+2+83283)

 

A=5×(622)×(43+2+83283)

 

A=5×(32)×(43+2+83283)

 

A=5×(1)×(43+2+83283)

 

A=5×1×(43+2+83283)

 

A=5×(43+2+83283)

 

A=5×(43+63+83283)

 

A=5×(103+83283)

 

A=5×(183283)

 

A=5×(6283)

 

A=5×(383)

 

A=5×(9383)

 

A=5×(13)

 

A=5×13

 

A=51×13

 

A=53

gibsonj338 Jul 1, 2017
 #3
avatar+2446 
0

Technically, 53 isn't completely simplified, so I'll simplify it; you did a lot of work for that problem...

 

53 "Distribute" the square root to the numerator and denominator. It follows the rule that ab=ab
5333 Because there is a radical in the denominator, you must rationalize it by multiplying the denominator by itself. Doing this gets rid of the radical in the denominator. 
5333 In the denominator, multiplying by itself is the same as squaring it, which undoes the square root.
533 Multiplying radicals is quite simple, actually. Just multiply the radicands (the number inside the radical) together. In general, ab=ab
153 The square root of 15 has no perfect-square factors and is therefore irreducible. No more simplification is possible. 
   
TheXSquaredFactor  Jul 2, 2017
 #2
avatar+130474 
+1

 

                 

Here's # 2.......we need to manipulate the Law of Cosines twice.....

 

We can first  find  angle RST...so we have

 

[ RS^2  +ST^2 - RT^2] / [ 2(RS)(ST)] = cos RST

 

So

 

[13^2 + 14^2  - 15^2] / [ 2(13) (14) ]  =  cos RST

 

So  

 

arcos  ( [13^2 + 14^2  - 15^2] / [ 2(13) (14) ] )  =  RST  ≈  67.38°

 

Since M is the mid-point of ST, then SM  = 7

 

 

Now manipulating the Law of Cosines again to find RM, we have that

 

RM  =  sqrt ( SM^2  + RS^2  - 2(SM)(RS) cos  67.38° )  

 

RM =  sqrt ( 7^2  + 13^2 - 2 (7)(13) cos  67.38° ) ≈ 12.166

 

Here's an approximate pic :

 

 

 

 

 

 

 

 

 

cool cool cool

 Jul 1, 2017

2 Online Users

avatar