hi, Im new to this site, and I need help with this problem. Please respond ASAP!
Find the area of a triangle wih sides of 4/3, 2, and 8/3.
Put in sqrt pls! Dont round, just exact form using sqrtt
Please help with this problem too!
In triangle RST,RS=13 ST=14, and RT=15
Let M be the midpoint of ST. Find RM
I do not know how to solve the second problem; however, I can help solve the first problem. To solve the first problem, use Heron's Formula.
A=√a+b+c2×(a+b+c2−a)×(a+b+c2−b)×(a+b+c2−c)
A = Area
a = side a or 43
b = side b or 2
c = side c or 83
A=√43+2+832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√43+63+832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√103+832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√1832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√1832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(43+63+832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(103+832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(1832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(62−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(186−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(186−86)×(43+2+832−2)×(43+2+832−83)
A=√3×(106)×(43+2+832−2)×(43+2+832−83)
A=√3×(53)×(43+2+832−2)×(43+2+832−83)
A=√3×53×(43+2+832−2)×(43+2+832−83)
A=√31×53×(43+2+832−2)×(43+2+832−83)
A=√153×(43+2+832−2)×(43+2+832−83)
A=√5×(43+2+832−2)×(43+2+832−83)
A=√5×(43+63+832−2)×(43+2+832−83)
A=√5×(103+832−2)×(43+2+832−83)
A=√5×(1832−2)×(43+2+832−83)
A=√5×(62−2)×(43+2+832−83)
A=√5×(3−2)×(43+2+832−83)
A=√5×(1)×(43+2+832−83)
A=√5×1×(43+2+832−83)
A=√5×(43+2+832−83)
A=√5×(43+63+832−83)
A=√5×(103+832−83)
A=√5×(1832−83)
A=√5×(62−83)
A=√5×(3−83)
A=√5×(93−83)
A=√5×(13)
A=√5×13
A=√51×13
A=√53
I do not know how to solve the second problem; however, I can help solve the first problem. To solve the first problem, use Heron's Formula.
A=√a+b+c2×(a+b+c2−a)×(a+b+c2−b)×(a+b+c2−c)
A = Area
a = side a or 43
b = side b or 2
c = side c or 83
A=√43+2+832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√43+63+832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√103+832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√1832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√1832×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(43+2+832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(43+63+832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(103+832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(1832−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(62−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(186−43)×(43+2+832−2)×(43+2+832−83)
A=√3×(186−86)×(43+2+832−2)×(43+2+832−83)
A=√3×(106)×(43+2+832−2)×(43+2+832−83)
A=√3×(53)×(43+2+832−2)×(43+2+832−83)
A=√3×53×(43+2+832−2)×(43+2+832−83)
A=√31×53×(43+2+832−2)×(43+2+832−83)
A=√153×(43+2+832−2)×(43+2+832−83)
A=√5×(43+2+832−2)×(43+2+832−83)
A=√5×(43+63+832−2)×(43+2+832−83)
A=√5×(103+832−2)×(43+2+832−83)
A=√5×(1832−2)×(43+2+832−83)
A=√5×(62−2)×(43+2+832−83)
A=√5×(3−2)×(43+2+832−83)
A=√5×(1)×(43+2+832−83)
A=√5×1×(43+2+832−83)
A=√5×(43+2+832−83)
A=√5×(43+63+832−83)
A=√5×(103+832−83)
A=√5×(1832−83)
A=√5×(62−83)
A=√5×(3−83)
A=√5×(93−83)
A=√5×(13)
A=√5×13
A=√51×13
A=√53
Technically, √53 isn't completely simplified, so I'll simplify it; you did a lot of work for that problem...
√53 | "Distribute" the square root to the numerator and denominator. It follows the rule that √ab=√a√b |
√5√3∗√3√3 | Because there is a radical in the denominator, you must rationalize it by multiplying the denominator by itself. Doing this gets rid of the radical in the denominator. |
√5∗√3√3∗√3 | In the denominator, multiplying by itself is the same as squaring it, which undoes the square root. |
√5∗√33 | Multiplying radicals is quite simple, actually. Just multiply the radicands (the number inside the radical) together. In general, √a∗√b=√a∗b |
√153 | The square root of 15 has no perfect-square factors and is therefore irreducible. No more simplification is possible. |
Here's # 2.......we need to manipulate the Law of Cosines twice.....
We can first find angle RST...so we have
[ RS^2 +ST^2 - RT^2] / [ 2(RS)(ST)] = cos RST
So
[13^2 + 14^2 - 15^2] / [ 2(13) (14) ] = cos RST
So
arcos ( [13^2 + 14^2 - 15^2] / [ 2(13) (14) ] ) = RST ≈ 67.38°
Since M is the mid-point of ST, then SM = 7
Now manipulating the Law of Cosines again to find RM, we have that
RM = sqrt ( SM^2 + RS^2 - 2(SM)(RS) cos 67.38° )
RM = sqrt ( 7^2 + 13^2 - 2 (7)(13) cos 67.38° ) ≈ 12.166
Here's an approximate pic :