+0  
 
0
42
5
avatar

The triangle  shown is a right triangle. The semicircles have the sides of the triangle as diameters. The areas of two of the semicircles are shown. What is the area of the third semicircle?

 

 Sep 4, 2020
 #1
avatar+165 
-1

If we use the pythagorean theorem, then the diameter of the last side is √(49+169) = √218

R=√(54.5)

A=54.5π

Ans= (54.5π)/2 = 27.25π

 Sep 4, 2020
 #2
avatar
0

I don't get your explanation and the answer is incorrect...

Guest Sep 4, 2020
 #4
avatar
+2

Hi, Nacirema!

 

Numbers 7 and 13 represent the areas of 2 semicircles.smiley

Guest Sep 4, 2020
 #3
avatar
+3

The triangle shown is a right triangle. The semicircles have the sides of the triangle as diameters. The areas of two of the semicircles are shown. What is the area of the third semicircle?

 

1/    {sqrt[(7 * 2) / pi]} * 2 = 4.222008246           ( short leg )

 

2/    {sqrt[(13 * 2) / pi]} * 2 = 5.753627392         ( long leg )

 

3/     {[sqrt(4.2220082462 + 5.7536273922)] / 2}2 *pi / 2 =  20 u2     ( area of largest semicircle )   laugh     

 Sep 4, 2020
 #5
avatar
0

Thanks guest!

Guest Sep 4, 2020

56 Online Users

avatar