We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
63
1
avatar

The parabola with equation y=ax^2+bx+c is graphed below:



The zeros of the quadratic ax^2 + bx + c are at x=m and x=n, where m>n. What is m-n?

 Nov 15, 2019

Best Answer 

 #1
avatar+8829 
+1

Here's one way to solve this:

 

The equation of this parabola in vertex form is

 

y  =  a(x - 2)2  -  4     , where  a  is some constant that "stretches" or "shrinks" the parabola.

 

To find  a  we can use the fact that the parabola passes through the point  (4, 12)

So we know the following must be true:

 

12  =  a(4 - 2)2  -  4

                                Simplify the right side of the equation....

12  =  4a  -  4

                                Add  4  to both sides of the equation.

16  =  4a

                                Divide both sides of the equation by  4

4  =  a

 

So the equation of this parabola is

 

y  =  4(x - 2)2 - 4

 

To find the zeros, we set  y  equal to  0  and solve for  x

 

0  =  4(x - 2)2 - 4

                              Add  4  to both sides of the equation.

4  =  4(x - 2)2

                              Divide both sides of the equation by  4

1  =  (x - 2)2

                              Take the ± square root of both sides.

±1  =  x - 2

                              Split into two equations and solve for  x ...

 

x - 2  =  1       or       x - 2  =  -1

  x  =  3                         x  =  1

 

So the zeros of the quadratic are at   x = 3   and   x = 1

 

3 - 1  =  2

 

Check:   https://www.desmos.com/calculator/wsmg9lgmsw

 Nov 15, 2019
 #1
avatar+8829 
+1
Best Answer

Here's one way to solve this:

 

The equation of this parabola in vertex form is

 

y  =  a(x - 2)2  -  4     , where  a  is some constant that "stretches" or "shrinks" the parabola.

 

To find  a  we can use the fact that the parabola passes through the point  (4, 12)

So we know the following must be true:

 

12  =  a(4 - 2)2  -  4

                                Simplify the right side of the equation....

12  =  4a  -  4

                                Add  4  to both sides of the equation.

16  =  4a

                                Divide both sides of the equation by  4

4  =  a

 

So the equation of this parabola is

 

y  =  4(x - 2)2 - 4

 

To find the zeros, we set  y  equal to  0  and solve for  x

 

0  =  4(x - 2)2 - 4

                              Add  4  to both sides of the equation.

4  =  4(x - 2)2

                              Divide both sides of the equation by  4

1  =  (x - 2)2

                              Take the ± square root of both sides.

±1  =  x - 2

                              Split into two equations and solve for  x ...

 

x - 2  =  1       or       x - 2  =  -1

  x  =  3                         x  =  1

 

So the zeros of the quadratic are at   x = 3   and   x = 1

 

3 - 1  =  2

 

Check:   https://www.desmos.com/calculator/wsmg9lgmsw

hectictar Nov 15, 2019

7 Online Users

avatar