The quadratic $ax^2 + bx + c$ can be expressed in the form $2(x - 4)^2 + 8$. When the quadratic $3ax^2 + 3bx + 3c$ is expressed in the form $n(x - h)^2 + k$, what is $h$?
3ax2 + 3bx + 3c
Factor out the 3: 3[ ax2 + bx + c ]
Factor out the a: 3[ a( x2 + (b/a)x ) + c ]
Complete the square: 3[ a( x2 + (b/a)x + b2/(4a)2 ) + c - b2/(4a) ]
Factor: 3[ a( (x + b/(2a) )2 ) + ( c - b2/(4a) )]
Multiply back the 3: 3a( (x + b/(2a) )2 ) + ( 3c - 3b2/(4a) )
n = 3a h = -b/(2a) k = 3c - 3b2/(4a)