+0  
 
0
59
2
avatar

sin(a+b)=0.86

sin(a-b)=0.34

What is sinbcosa?

 

(I did this question previously on the test by making two formulas, one for a and one for b and substituting the formulas into each other to figure out a and b separately, but now I don't remember how to do it (ps answer is 0.26)

Guest Mar 1, 2017
Sort: 

2+0 Answers

 #1
avatar+75299 
0

sin (a + b)   =  sinacosb + sinbcosa  = .86

sin (a - b)   =   sinacosb - sinbcosa  = .34      add these

 

2sinacosb  =  1.20          divide by 2

 

sinacosb  = .60

 

Sub this into either of the first two equations

 

.60 + sinbcosa  = .86     subtract .60 from each side

 

sinbcosa   = .26 

 

 

cool cool cool

CPhill  Mar 1, 2017
 #2
avatar+18355 
+5

sin(a+b)=0.86

sin(a-b)=0.34

What is sinbcosa?

 

\(\small{ \begin{array}{|lrcll|} \hline (1) & \sin(a+b) &=& \sin(a)\cos(b)+\cos(a)\sin(b) \\ (2) & \sin(a-b) &=& \sin(a)\cos(b)-\cos(a)\sin(b) \\ \hline (1)-(2): & \sin(a+b)-\sin(a-b) &=& \sin(a)\cos(b)+\cos(a)\sin(b)-[~\sin(a)\cos(b)-\cos(a)\sin(b)~] \\ & \sin(a+b)-\sin(a-b) &=& \sin(a)\cos(b)+\cos(a)\sin(b)- \sin(a)\cos(b)+\cos(a)\sin(b) \\ & \sin(a+b)-\sin(a-b) &=& \sin(a)\cos(b)- \sin(a)\cos(b)+\cos(a)\sin(b)+\cos(a)\sin(b) \\ & \sin(a+b)-\sin(a-b) &=& \cos(a)\sin(b)+\cos(a)\sin(b) \\ & \sin(a+b)-\sin(a-b) &=& 2\cos(a)\sin(b) \\ & \sin(a+b)-\sin(a-b) &=& 2\sin(b)\cos(a) \\ & \sin(b)\cos(a) &=& \frac12\cdot [\sin(a+b)-\sin(a-b)] \quad | \quad \sin(a+b)=0.86 \quad \sin(a-b)=0.34 \\ & \sin(b)\cos(a) &=& \frac12\cdot (0.86-0.34) \\ & \sin(b)\cos(a) &=& \frac12\cdot (0.52) \\ & \mathbf{\sin(b)\cos(a)} & \mathbf{=} & \mathbf{0.26} \\ \hline \end{array} } \)

 

laugh

heureka  Mar 1, 2017
edited by heureka  Mar 1, 2017

11 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details