The figure shown has a parallelogram on top and a rectangle below it:

What is the total area of the figure?

Nickolas Mar 22, 2019

#2**+7 **

To calculate the area of this figure we need to know the area of the parrallogram and rectangle the shapes are** clearly** outlined so we don't need to worry on which thing to find......

*The formula to find the area of a parallogram is.*

\(Area = Base*Height\)

**The Formula of a rectangle is. **

**\(Area = length * With\) **

*Then we work out are problem and calculate the following *

*Using the formula for the rectangle we look at the length of the each sides we never want to calcualte to SIDES or LINES THAT ARE PARALLEL in a rectangle*

*and by looking at the rectangle we can see it has a *

*With of 7.3 inches *

**& **

*Length of 48.2 *

*Now we multiply them together and are product will be the area of the rectangle. *

*\(7.3 * 48.2 = 351.86\) *

So this mean are current value and the are of the rectangle is **351.86 Sq inches **

Now all we have to do is find the area of the parallogram which I find similar to finding the area of a rectangle

We see that the parrallogram has an exact base as the rectangle and has a **height of 13.4 Sq inches** so we multiply them together

\(48.2 * 13.4 = 645.88\)

So now we know the parralogram's area is equal to 645.88 sq inches so now all we have to do is add are area's and find our answer.

\(351.86 + 645.88 = 997.74\)

so we now know are toal area is **997.74 Sq inches.**

HiylinLink Mar 22, 2019