+0  
 
+1
232
1
avatar

Given that \(xy = \dfrac32\) and both x and y are nonnegative real numbers, find the minimum value of \(10x + \dfrac{3y}5.\)

Guest Jan 27, 2018

Best Answer 

 #1
avatar+94126 
+2

Given that  \(xy = \dfrac32 \)   and both x and y are nonnegative real numbers, find the minimum value of 

\(10x + \dfrac{3y}5\)

 

 

\(y=\frac{3}{2x}\)

 

so

\(​​​​z=10x+\frac{3y}{5}\\ ​​​​z=10x+\frac{3}{5}\times \frac{3}{2x}\\ ​​​​z=10x+\frac{9}{10x}\\ ​​​​z=10x+0.9x^{-1}\\ \frac{dz}{dx}=10-0.9x^{-2}\\ \frac{d^2z}{dx^2}=1.8x^{-3}>0\qquad \text{So any stationary point will be a minimum.}\\ \text{Find stat point}\\ 10-0.9x^{-2}=0\\ 10=0.9x^{-2}\\ 10=\frac{9}{10x^2}\\ 100x^2=9\\ x^2=\frac{9}{100}\\ x=\frac{3}{10}\qquad \text{Since x>0}\\ so\\ ​​​​z=10x+0.9x^{-1}\\ min\;\;value\\ =10*\frac{3}{10}+\frac{9*10}{10*3}\\ =3+3\\ =6 \)

 

 

check:

 

Here is the graph:

Melody  Jan 28, 2018
 #1
avatar+94126 
+2
Best Answer

Given that  \(xy = \dfrac32 \)   and both x and y are nonnegative real numbers, find the minimum value of 

\(10x + \dfrac{3y}5\)

 

 

\(y=\frac{3}{2x}\)

 

so

\(​​​​z=10x+\frac{3y}{5}\\ ​​​​z=10x+\frac{3}{5}\times \frac{3}{2x}\\ ​​​​z=10x+\frac{9}{10x}\\ ​​​​z=10x+0.9x^{-1}\\ \frac{dz}{dx}=10-0.9x^{-2}\\ \frac{d^2z}{dx^2}=1.8x^{-3}>0\qquad \text{So any stationary point will be a minimum.}\\ \text{Find stat point}\\ 10-0.9x^{-2}=0\\ 10=0.9x^{-2}\\ 10=\frac{9}{10x^2}\\ 100x^2=9\\ x^2=\frac{9}{100}\\ x=\frac{3}{10}\qquad \text{Since x>0}\\ so\\ ​​​​z=10x+0.9x^{-1}\\ min\;\;value\\ =10*\frac{3}{10}+\frac{9*10}{10*3}\\ =3+3\\ =6 \)

 

 

check:

 

Here is the graph:

Melody  Jan 28, 2018

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.