We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# hellllppppp????

+1
320
1

Given that $$xy = \dfrac32$$ and both x and y are nonnegative real numbers, find the minimum value of $$10x + \dfrac{3y}5.$$

Jan 27, 2018

### Best Answer

#1
+2

Given that  $$xy = \dfrac32$$   and both x and y are nonnegative real numbers, find the minimum value of

$$10x + \dfrac{3y}5$$

$$y=\frac{3}{2x}$$

so

$$​​​​z=10x+\frac{3y}{5}\\ ​​​​z=10x+\frac{3}{5}\times \frac{3}{2x}\\ ​​​​z=10x+\frac{9}{10x}\\ ​​​​z=10x+0.9x^{-1}\\ \frac{dz}{dx}=10-0.9x^{-2}\\ \frac{d^2z}{dx^2}=1.8x^{-3}>0\qquad \text{So any stationary point will be a minimum.}\\ \text{Find stat point}\\ 10-0.9x^{-2}=0\\ 10=0.9x^{-2}\\ 10=\frac{9}{10x^2}\\ 100x^2=9\\ x^2=\frac{9}{100}\\ x=\frac{3}{10}\qquad \text{Since x>0}\\ so\\ ​​​​z=10x+0.9x^{-1}\\ min\;\;value\\ =10*\frac{3}{10}+\frac{9*10}{10*3}\\ =3+3\\ =6$$

check:

Here is the graph: Jan 28, 2018

### 1+0 Answers

#1
+2
Best Answer

Given that  $$xy = \dfrac32$$   and both x and y are nonnegative real numbers, find the minimum value of

$$10x + \dfrac{3y}5$$

$$y=\frac{3}{2x}$$

so

$$​​​​z=10x+\frac{3y}{5}\\ ​​​​z=10x+\frac{3}{5}\times \frac{3}{2x}\\ ​​​​z=10x+\frac{9}{10x}\\ ​​​​z=10x+0.9x^{-1}\\ \frac{dz}{dx}=10-0.9x^{-2}\\ \frac{d^2z}{dx^2}=1.8x^{-3}>0\qquad \text{So any stationary point will be a minimum.}\\ \text{Find stat point}\\ 10-0.9x^{-2}=0\\ 10=0.9x^{-2}\\ 10=\frac{9}{10x^2}\\ 100x^2=9\\ x^2=\frac{9}{100}\\ x=\frac{3}{10}\qquad \text{Since x>0}\\ so\\ ​​​​z=10x+0.9x^{-1}\\ min\;\;value\\ =10*\frac{3}{10}+\frac{9*10}{10*3}\\ =3+3\\ =6$$

check:

Here is the graph: Melody Jan 28, 2018