+0  
 
+5
626
4
avatar+10 

hello, 

 

Having problems with this simple problem:

 

sqrt(sqrt(x-5) + x) = 5 

 

Find all real solutions 

 Jan 20, 2016
edited by Guest  Jan 20, 2016
edited by Guest  Jan 20, 2016
edited by Guest  Jan 20, 2016
edited by Guest  Jan 20, 2016

Best Answer 

 #1
avatar+26387 
+10

sqrt(sqrt(x-5) + x) = 5 

Find all real solutions 

 

\(\begin{array}{lcll} \sqrt{ \sqrt{x-5} + x } &=& 5 \qquad &|\qquad \text{(square both sides)} \\ \sqrt{x-5} + x &=& 5^2 \\ \sqrt{x-5} + x &=& 25 \qquad &|\qquad - x \\ \sqrt{x-5} &=& 25-x \\ \sqrt{x-5} &=& 25-x \qquad &|\qquad \text{(square both sides)} \\ x-5 &=& (25-x)^2 \\ x-5 &=& 25^2-2\cdot 25x+x^2 \\ x-5 &=&625-50x+x^2 \\ 625-50x+x^2 &=& x-5 \qquad &|\qquad - x+5 \\ 625-50x+x^2 - x+5 &=&0 \\ x^2 -51x +630 &=&0 \\ x_{1,2} &=& \frac12 \cdot ( 51\pm \sqrt{51^2-4\cdot 630} ) \\ x_{1,2} &=& \frac12 \cdot( 51\pm \sqrt{2601-2530} )\\ x_{1,2} &=& \frac12 \cdot( 51\pm \sqrt{81} )\\ x_{1,2} &=& \frac12 \cdot ( 51\pm 9 )\\\\ x_{1} &=& \frac12 \cdot ( 51 + 9 )\\ \mathbf{ x_{1} } &\mathbf{=}& \mathbf{30}\\\\ x_{2} &=& \frac12 \cdot ( 51 - 9 )\\ \mathbf{ x_{2} } &\mathbf{=}& \mathbf{21} \end{array}\)

 

 

laugh

 Jan 20, 2016
edited by heureka  Jan 20, 2016
 #1
avatar+26387 
+10
Best Answer

sqrt(sqrt(x-5) + x) = 5 

Find all real solutions 

 

\(\begin{array}{lcll} \sqrt{ \sqrt{x-5} + x } &=& 5 \qquad &|\qquad \text{(square both sides)} \\ \sqrt{x-5} + x &=& 5^2 \\ \sqrt{x-5} + x &=& 25 \qquad &|\qquad - x \\ \sqrt{x-5} &=& 25-x \\ \sqrt{x-5} &=& 25-x \qquad &|\qquad \text{(square both sides)} \\ x-5 &=& (25-x)^2 \\ x-5 &=& 25^2-2\cdot 25x+x^2 \\ x-5 &=&625-50x+x^2 \\ 625-50x+x^2 &=& x-5 \qquad &|\qquad - x+5 \\ 625-50x+x^2 - x+5 &=&0 \\ x^2 -51x +630 &=&0 \\ x_{1,2} &=& \frac12 \cdot ( 51\pm \sqrt{51^2-4\cdot 630} ) \\ x_{1,2} &=& \frac12 \cdot( 51\pm \sqrt{2601-2530} )\\ x_{1,2} &=& \frac12 \cdot( 51\pm \sqrt{81} )\\ x_{1,2} &=& \frac12 \cdot ( 51\pm 9 )\\\\ x_{1} &=& \frac12 \cdot ( 51 + 9 )\\ \mathbf{ x_{1} } &\mathbf{=}& \mathbf{30}\\\\ x_{2} &=& \frac12 \cdot ( 51 - 9 )\\ \mathbf{ x_{2} } &\mathbf{=}& \mathbf{21} \end{array}\)

 

 

laugh

heureka Jan 20, 2016
edited by heureka  Jan 20, 2016
 #2
avatar
0

Solve for x:
sqrt(sqrt(x-5)+x) = 5

Raise both sides to the power of two:
sqrt(x-5)+x = 25

Subtract x from both sides:
sqrt(x-5) = 25-x

Raise both sides to the power of two:
x-5 = (25-x)^2

Expand out terms of the right hand side:
x-5 = x^2-50 x+625

Subtract x^2-50 x+625 from both sides:
-x^2+51 x-630 = 0

The left hand side factors into a product with three terms:
-((x-30) (x-21)) = 0

Multiply both sides by -1:
(x-30) (x-21) = 0

Split into two equations:
x-30 = 0 or x-21 = 0

Add 30 to both sides:
x = 30 or x-21 = 0

Add 21 to both sides:
x = 30 or x = 21

sqrt(sqrt(x-5)+x) => sqrt(sqrt(21-5)+21)  =  5:
So this solution is correct

sqrt(sqrt(x-5)+x) => sqrt(sqrt(30-5)+30)  =  sqrt(35) ~~ 5.91608:
So this solution is incorrect

The solution is:
Answer: | x = 21

 Jan 20, 2016
 #3
avatar+26387 
+5

sqrt(sqrt(x-5) + x) = 5 

Find all real solutions 

 

The only real solution is 21

 

laugh

 Jan 20, 2016
edited by heureka  Jan 20, 2016
edited by heureka  Jan 20, 2016
 #4
avatar
0

theyre amazing arnt they

 Jan 20, 2016

3 Online Users