+0  
 
0
359
1
avatar

In triangle $ABC$, altitudes $AD$, $BE$, and $CF$ intersect at the orthocenter $H$. If $\angle ABC = 49^\circ$ and $\angle ACB = 12^\circ$, then find the measure of $\angle BHC$, in degrees.

Guest Apr 2, 2018
 #1
avatar+91046 
+1

See the pic, here :

 

 

Since ABC = 49  and ACB  = 12

Then BAC  =  180  - 49 - 12 =  119

 

Then  we have quadrilateral HFAE  

Angle HFA  = 90

Angle FAE  =  Angle BAC = 119

Angle AEH  = 90

 

So  angle FHE  = Angle BHC  =   360 - 90  - 90 - 119   =  61°

 

 

cool cool cool

CPhill  Apr 2, 2018

19 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.