+0  
 
+1
56
6
avatar+4407 

Help 20

NotSoSmart  Nov 23, 2018

Best Answer 

 #1
avatar+3478 
+2

We can solve this using quadratic formula, \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) . (Glad that web2.0calc gives you this). Plugging the numbers into the quadratic formula, we have one solution as \(x=\frac{-3+\sqrt{3^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}, \quad \frac{-3+\sqrt{29}}{2}\) and the other solution as \(x=\frac{-3-\sqrt{3^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}:\quad \frac{-3-\sqrt{29}}{2}.\) Thus, the final solutions as \(x=\frac{-3+\sqrt{29}}{2},\:x=\frac{-3-\sqrt{29}}{2}.\)

tertre  Nov 23, 2018
 #1
avatar+3478 
+2
Best Answer

We can solve this using quadratic formula, \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) . (Glad that web2.0calc gives you this). Plugging the numbers into the quadratic formula, we have one solution as \(x=\frac{-3+\sqrt{3^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}, \quad \frac{-3+\sqrt{29}}{2}\) and the other solution as \(x=\frac{-3-\sqrt{3^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}:\quad \frac{-3-\sqrt{29}}{2}.\) Thus, the final solutions as \(x=\frac{-3+\sqrt{29}}{2},\:x=\frac{-3-\sqrt{29}}{2}.\)

tertre  Nov 23, 2018
 #2
avatar+92856 
+2

Excellent, tertre...your LaTex presentations are good...

 

 

cool cool cool

CPhill  Nov 23, 2018
edited by CPhill  Nov 23, 2018
 #3
avatar+3478 
+1

Thank you, CPhill! I have been working on them.

tertre  Nov 23, 2018
 #4
avatar+4407 
+2

umm i'm kinda confused still :(

NotSoSmart  Nov 24, 2018
 #5
avatar+3478 
+2

Sorry if my explanation was confusing. Read more about the quadratic formula https://www.purplemath.com/modules/quadform.htm and https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-using-the-quadratic-formula/a/quadratic-formula-review, and I'm sure that you'll get a deeper understanding. 

tertre  Nov 24, 2018
 #6
avatar+92856 
+1

1x^2 + 3x - 5   = 0

 

We have the form   ax^2 + bx + c   = 0

Where a = 1     b = 3      and    c   = -5

 

The quadraic formula   is

 

[  - b ± √ [  b^2  - (4 * a * c) ]   ]     /    [ 2 * a ]

 

Plugging in for a, b, c......we have

 

[ - 3 ± √ [ 3^2 - (4 * 1 * -5) ] ]  /   [ 2 * 1 ]       simplify

 

[ -3  ± √ [ 9 - ( -20) ] } /  2

 

[ - 3  ± √ 29   ]    /   2

 

And the two solutions as are tertre found

 

x = [ -3  + √ 29   ]    /   2        and       x =    [- 3  - √ 29   ]    /   2

 

 

 

cool cool cool

CPhill  Nov 26, 2018

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.