+0  
 
+1
217
3
avatar+809 

If y>0, find the range of all possible values of  y such that \(\lceil{y}\rceil\cdot\lfloor{y}\rfloor=42 \). Express your answer using interval notation.

 Aug 6, 2018
 #1
avatar+21819 
+2

If \(y>0\), find the range of all possible values of  \(y\)  such that  \(\lceil{y}\rceil\cdot\lfloor{y}\rfloor=42.\)

\lceil{y}\rceil\cdot\lfloor{y}\rfloor=42

Express your answer using interval notation.

 

\(6 \lt y \lt 7\)

 

Source:

 

laugh

 Aug 6, 2018
edited by heureka  Aug 6, 2018
 #2
avatar
+2

Mathematica 11 Home Edition gives the following 2  values:
solve ceiling({y}) floor({y}) = 42 for y

-7 < y < -6          and        6 < y < 7

 Aug 6, 2018
 #3
avatar+809 
+2

Thanks, guys! 

 Aug 6, 2018

39 Online Users

avatar
avatar
avatar
avatar
avatar