+0  
 
+1
164
3
avatar+809 

If y>0, find the range of all possible values of  y such that \(\lceil{y}\rceil\cdot\lfloor{y}\rfloor=42 \). Express your answer using interval notation.

 Aug 6, 2018
 #1
avatar+20807 
+2

If \(y>0\), find the range of all possible values of  \(y\)  such that  \(\lceil{y}\rceil\cdot\lfloor{y}\rfloor=42.\)

\lceil{y}\rceil\cdot\lfloor{y}\rfloor=42

Express your answer using interval notation.

 

\(6 \lt y \lt 7\)

 

Source:

 

laugh

 Aug 6, 2018
edited by heureka  Aug 6, 2018
 #2
avatar
+2

Mathematica 11 Home Edition gives the following 2  values:
solve ceiling({y}) floor({y}) = 42 for y

-7 < y < -6          and        6 < y < 7

 Aug 6, 2018
 #3
avatar+809 
+2

Thanks, guys! 

 Aug 6, 2018

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.