+0  
 
0
233
4
avatar+606 

 

Simplify \[i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.\]

 Apr 9, 2018
 #1
avatar
+1

∑[i^n, n, 1, 99] =i - 1 - i + 1 + i - 1 - i.................... 1 + i - 1 - i = - 1. Sorry for the typo!!.

 Apr 9, 2018
edited by Guest  Apr 9, 2018
 #2
avatar+9917 
+1

∑[i^n, n, 1, 99] =i - 1 - i + 1 + i - 1 - i + 1....................- i + 1 + i - 1 - i = - 1

 

 Apr 9, 2018
edited by Omi67  Apr 9, 2018
 #3
avatar+428 
+1

∑[i^n, n, 1, 99] =i - 1 - i + 1 + i - 1 - i + 1....................- i + 1 + i - 1 - i = - 1

 Apr 9, 2018
 #4
avatar+21191 
+1

Simplify \[i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.\]

 

\(\begin{array}{|rcll|} \hline && \displaystyle i^1+i^2+i^3+i^4+i^5+\cdots+ i^{97} + i^{98}+i^{99} \\\\ &=& (i^1+i^2+i^3+i^4)(1+i^4+i^8+i^{12}+\cdots+ i^{96} )-i^{100} \\\\ &=& (i^1+i^2)(1+i^2)\sum \limits_{k=0}^{24} (i^{4k})-i^{100} \quad & | \quad i^2 = -1 \\\\ &=& (i^1+i^2)(\underbrace{1+i^2}_{=0})\sum \limits_{k=0}^{24} (i^{4k})-i^{100} \\\\ &=& 0-i^{100} \\\\ &=& -(i^2)^{50} \\\\ &=& -(-1)^{50} \\\\ &=& -1 \\ \hline \end{array} \)

 

laugh

 Apr 10, 2018

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.