Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
558
4
avatar

Suppose a, b, c, and d are real numbers which satisfy the system of equations

a + 2b + 3c + 4d = 10

4a + b + 2c + 3d = 4

3a + 4b + c + 2d = -10

2a + 3b + 4c + d = −4.

Find a + b + c + d.

 Jul 5, 2021

Best Answer 

 #1
avatar+175 
+8

${a+2b+3c+4d=104a+b+2c+3d=43a+4b+c+2d=102a+3b+4c+d=4$

 

${a+2b+3c+4d=10  a+2b+3c+4d(2b+3c+4d)=10(2b+3c+4d)  a=102b3c4d4a+b+2c+3d=43a+4b+c+2d=102a+3b+4c+d=4$


${4(102b3c4d)+b+2c+3d=43(102b3c4d)+4b+c+2d=102(102b3c4d)+3b+4c+d=4  $

 

${408b12c16d+b+2c+3d=4306b9c12d+4b+c+2d=10204b6c8d+3b+4c+d  $

 

$ {7b10c13d+40=42b8c10d+30=10b2c7d+20=4  $


$ {7b10c13d+40=4   7b10c13d+40(10c13d)=4(10c13d)   7b+40=4+10c+13d  7b=10c+13d36  b=10c+13d3672b8c10d+30=10b2c7d+20=4  $

 

$ {2(10c+13d367)8c10d+30=10(10c+13d367)2c7d+20=4  $

there's quite a lot of steps, used wolfram and got:

 

 $ {36c44d727+30=1036c44d727=4036c44d72=28036c72=280+44d36c=44d208c=11d5294c36d367+20=4  $ 

thus, 


  $ {4(11d529)36d367+20=4 $

$ \Updownarrow  $

$ -\frac{4\left(10d+19\right)}{9}=-24  $

$ -4\left(10d+19\right)=-216  $

$ 10d+19=54  $

$10d=35$

$ d=\frac{7}{2}  $


since we know back, lets walk all the way back for, c, then b, then a:

 

$ c=-\frac{11d-52}{9} \Leftrightarrow c=-\frac{11\cdot \frac{7}{2}-52}{9} \implies c=-\frac{\frac{77}{2}-52}{9} \implies c=-\frac{-\frac{27}{2}}{9} \implies c=-\left(-\frac{27}{18}\right) \text{  or just }  \boxed{c=\frac{27}{18}} \Leftrightarrow  \boxed{c=\frac{3}{2}}  $

 

$ b=-\frac{10c+13d-36}{7} \Leftrightarrow b=-\frac{10\cdot \frac{3}{2}+13\cdot \frac{7}{2}-36}{7} \implies b=-\frac{15+\frac{91}{2}-36}{7} \implies b=-\frac{\frac{91}{2}-21}{7} \implies b=-\frac{\frac{91}{2}-\frac{21\cdot \:2}{2}}{7} \implies b=-\frac{\frac{49}{2}}{7} \implies \boxed{-\frac{49}{14}} \Leftrightarrow \boxed{b=-\frac{7}{2}} $

 

$a=10-2b-3c-4d \Leftrightarrow a=10-2\left(-\frac{7}{2}\right)-3\cdot \frac{3}{2}-4\cdot \frac{7}{2} \leftrightarrow a=2\cdot \frac{7}{2}-4\cdot \frac{7}{2}-3\cdot \frac{3}{2}+10 \implies a=-2\cdot \frac{7}{2}-3\cdot \frac{3}{2}+10 \implies a= -\frac{14}{-2}- \frac{9}{2}+10 \implies a= -7-\frac{9}{2}+10 \implies a= -\frac{9}{2}+3 \implies a= \frac{3\cdot \:2}{2}-\frac{9}{2} \implies \boxed{\frac{-3}{2}}  $

 

thus, we got:

 

$ d=\frac{7}{2} \ \ \ ; \ \ \  b=-\frac{7}{2}  \ \ \ ; \ \ \ c=\frac{3}{2}  \ \ \ ; \ \ \   a=-\frac{3}{2}  $

 

to complete our final condition of $a+b+c+d$:

 

$ a+b+c+d= \frac{7}{2}+\left(-\frac{7}{2}\right)+\frac{3}{2}+\left(-\frac{3}{2}\right)  $

$ \boxed{a+b+c+d =0}  $

 

maybe i have messed anything up in the way :\

 Jul 5, 2021
 #1
avatar+175 
+8
Best Answer

${a+2b+3c+4d=104a+b+2c+3d=43a+4b+c+2d=102a+3b+4c+d=4$

 

${a+2b+3c+4d=10  a+2b+3c+4d(2b+3c+4d)=10(2b+3c+4d)  a=102b3c4d4a+b+2c+3d=43a+4b+c+2d=102a+3b+4c+d=4$


${4(102b3c4d)+b+2c+3d=43(102b3c4d)+4b+c+2d=102(102b3c4d)+3b+4c+d=4  $

 

${408b12c16d+b+2c+3d=4306b9c12d+4b+c+2d=10204b6c8d+3b+4c+d  $

 

$ {7b10c13d+40=42b8c10d+30=10b2c7d+20=4  $


$ {7b10c13d+40=4   7b10c13d+40(10c13d)=4(10c13d)   7b+40=4+10c+13d  7b=10c+13d36  b=10c+13d3672b8c10d+30=10b2c7d+20=4  $

 

$ {2(10c+13d367)8c10d+30=10(10c+13d367)2c7d+20=4  $

there's quite a lot of steps, used wolfram and got:

 

 $ {36c44d727+30=1036c44d727=4036c44d72=28036c72=280+44d36c=44d208c=11d5294c36d367+20=4  $ 

thus, 


  $ {4(11d529)36d367+20=4 $

$ \Updownarrow  $

$ -\frac{4\left(10d+19\right)}{9}=-24  $

$ -4\left(10d+19\right)=-216  $

$ 10d+19=54  $

$10d=35$

$ d=\frac{7}{2}  $


since we know back, lets walk all the way back for, c, then b, then a:

 

$ c=-\frac{11d-52}{9} \Leftrightarrow c=-\frac{11\cdot \frac{7}{2}-52}{9} \implies c=-\frac{\frac{77}{2}-52}{9} \implies c=-\frac{-\frac{27}{2}}{9} \implies c=-\left(-\frac{27}{18}\right) \text{  or just }  \boxed{c=\frac{27}{18}} \Leftrightarrow  \boxed{c=\frac{3}{2}}  $

 

$ b=-\frac{10c+13d-36}{7} \Leftrightarrow b=-\frac{10\cdot \frac{3}{2}+13\cdot \frac{7}{2}-36}{7} \implies b=-\frac{15+\frac{91}{2}-36}{7} \implies b=-\frac{\frac{91}{2}-21}{7} \implies b=-\frac{\frac{91}{2}-\frac{21\cdot \:2}{2}}{7} \implies b=-\frac{\frac{49}{2}}{7} \implies \boxed{-\frac{49}{14}} \Leftrightarrow \boxed{b=-\frac{7}{2}} $

 

$a=10-2b-3c-4d \Leftrightarrow a=10-2\left(-\frac{7}{2}\right)-3\cdot \frac{3}{2}-4\cdot \frac{7}{2} \leftrightarrow a=2\cdot \frac{7}{2}-4\cdot \frac{7}{2}-3\cdot \frac{3}{2}+10 \implies a=-2\cdot \frac{7}{2}-3\cdot \frac{3}{2}+10 \implies a= -\frac{14}{-2}- \frac{9}{2}+10 \implies a= -7-\frac{9}{2}+10 \implies a= -\frac{9}{2}+3 \implies a= \frac{3\cdot \:2}{2}-\frac{9}{2} \implies \boxed{\frac{-3}{2}}  $

 

thus, we got:

 

$ d=\frac{7}{2} \ \ \ ; \ \ \  b=-\frac{7}{2}  \ \ \ ; \ \ \ c=\frac{3}{2}  \ \ \ ; \ \ \   a=-\frac{3}{2}  $

 

to complete our final condition of $a+b+c+d$:

 

$ a+b+c+d= \frac{7}{2}+\left(-\frac{7}{2}\right)+\frac{3}{2}+\left(-\frac{3}{2}\right)  $

$ \boxed{a+b+c+d =0}  $

 

maybe i have messed anything up in the way :\

UsernameTooShort Jul 5, 2021
 #2
avatar+130477 
0

Excellent   job, UNTS  !!!!!    (and  the answer IS  correct......   )

 

I'd  give you  five points  (if I could)  for  all that  effort   !!!

 

Alas......you  will just  have to settle for  "Best Answer"  and 1 point from me.....sad

 

 

cool cool cool

CPhill  Jul 5, 2021
 #3
avatar+33657 
+3

Alternatively, you could just add them all up to get

 

10a + 10b + 10c + 10d = 0

 

so:    a + b + c + d = 0

 Jul 5, 2021
 #4
avatar+112 
+1

LMFAO!!

Hours of complex, laborious work and a few seconds of WolframAlpha computer time, all to add 4 zeros. 

This would make great cannon fodder for one of GingerAle’s troll posts!

 Jul 6, 2021

2 Online Users