if z2+z+1=0,
find z49+z50+z51+z52+z53.
z2+z+1=0⇒z+1=−z2⇒z2+z=−1z2+z+1=(1+z)2−z|z+1=−z2z2+z+1=(−z2)2−zz2+z+1=z4−z|z2+z+1=00=z4−zz4=z
z49=z48zz49=(z4)12z|z4=zz49=(z)12zz49=(z4)3z|z4=zz49=(z)3zz49=z4z49=z
z49+z50+z51+z52+z53=z49(1+z+z2+z3+z4)z49=z1+z+z2=0z4=z=z(0+z3+z)=z4+z2|z4=z=z+z2|z2+z=−1=−1
z49+z50+z51+z52+z53=−1