The product $(3-\sqrt{5})(4+\sqrt{5})(1+6\sqrt{5})$ can be expressed in the form $a+b\sqrt{5}$, where $a$ and $b$ are integers. Find $a+b$.
\((3-\sqrt{5})(4+\sqrt{5})(1+6\sqrt{5})\)
Product of first two
( 12 -sqrt 5) - 5) = (7 - sqrt (5) )
(7 -sqrt 5) ( 1+ 6sqrt 5) = 7 + 41sqrt 5 - 30 = -23 + 41sqrt (5)