+0  
 
0
293
3
avatar+13 

Problem:

Find the 3 smallest positive x-intercepts of the graph of

 

\[y = \cos(12x) + \cos(16x)\]

 

and list them in increasing order.

 

Enter your answer as a list of x-coordinates from least to greatest.

 Jul 11, 2022
 #1
avatar
-1

The intercepts are pi/14, pi/7, 3*pi/14.

 Jul 11, 2022
 #2
avatar+33661 
+3

This should help:

 

 Jul 11, 2022
 #3
avatar
+3

Use the identity

\(\displaystyle \cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos \left( \frac{A-B}{2}\right).\)

Then,

\(\displaystyle \cos(12x)+\cos(16x)=2\cos(14x)\cos(2x)\\ =0\\ \text{ when } \\ 14x = \pi/2 + m\pi \\ \text{or when } \\ 2x = \pi/2 +n\pi, \ \text{ m and n integers.}\)

Smallest will be when m = 0, then x = pi/28, etc.

 Jul 11, 2022

2 Online Users