We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
105
1
avatar

Consider the 1 by 3 vectors 

v = <1 , 2 , 1>  w = <1 , 4 , 5>  x = <-1 , 6 , 15>.

 

 If they aren't, find coefficients a, b, and c, not all 0, such that

 

a <1 , 2 , 1>  + b<1 , 4 , 5> + c<-1 , 6 , 15> = <0 , 0 , 0>.

 

unless they are linearly independent.

 Jul 15, 2019
 #1
avatar+105195 
+1

We can see if we can find a solution for this system

 

a   +  b   - c    =  0       (1)   

2a  + 4b + 6c  = 0       (2)

a    + 5b  + 15c = 0     (3)

 

Multiply  (1) by 6   and add to (2)  and we get that

 

8a + 10b  = 0    (4)

 

Multiply (1) by 15 and add to (3)

16a + 20b = 0    (5)

 

(5)  is a multiple of (4).....so these are dependent

  

8a  = -10b

a = -10/8  b

a = -5/4 b

b = -4/5a

 

And 

a + b - c  = 0

a - (4/5)a  - c  = 0

(1/5)a  =  c

 

So...if we let a  =  5    then  b = (-4/5)(5) = -4   and c = (1/5)(5)  = 1

 

Check

 

5 ( 1, 2, 1)   - 4 ( 1, 4 , 5 )  + 1 ( - 1, 6 , 15 )   =  ( 0 , 0 , 0 ) 

 

 

 

cool cool cool

 Jul 15, 2019

26 Online Users

avatar
avatar