+0

# Help as soon as possible!

0
325
1

I believe you have to solve it by using law of cosines, connecting triangles with the origin.

Or anyway you prefer, I just need a solution.

Jun 6, 2019

#1
+114139
+1

The coordinates of C  =   (2cos (pi/12), 2sin(pi/12)  =  (2cos 15°, 2sin 15°)

cos (15°)  =  [ 1 + √3 ]                   sin (15°)  =  [√3 - 1 ]

_______                                      _______

2√2                                              2√2

So  C  =  ( [ 1 + √3] /  √2 ,  [ √3 - 1 ] / √2 )

The coordinates of A  =   (4cos (3pi/12) , 4 sin (3pi/12)  =  (4cos (pi/4) , 4sin (pi/ 4) )  =

( 4/√2, 4 / √2 )

The coordinates of B =  (3cos (5pi/12) , 3 sin (5pi/12)  =  (3cos (75°) , 3sin (75°) ) =

( 3 [ √3 - 1] / [2√2] ,  3[ 1 + √3]/ [2√2] )

So

AB^2   =     ( 3 [ √3 - 1] / [2√2] - 4/√2)^2  +  ( 3[ 1 + √3]/ [2√2] - 4/√2)^2  = 25 - 12√3  ≈ 4.22

AC^2  = (4/√2 -  [ 1 + √3] /  √2)^2  + ( 4/√2 -  [ √3 - 1 ] / √2)^2 =  20 - 8√3  ≈  6.14

BC^2  = ( 3 [ √3 - 1] / [2√2] - [ 1 + √3] /  √2)^2 + (  3[ 1 + √3]/ [2√2] -  [ √3 - 1 ] / √2)^2  = 7

[ Because of all the nasty radicals....I used Wolfram Alpha to compute these ]

Jun 6, 2019