We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
64
2
avatar

At what point does the graph of 3x+4y=15 intersect the graph of x^2+y^2=9? Express any non-integer coordinate as a common fraction.

 Aug 12, 2019
 #1
avatar
+1

We solve this like a system of equations.

Solve for x or y,

Once you do that you will get,

\(\begin{align*} x=\frac{9}{5} \end{align*}\)

Then you can substute this into both equations and you will get for \(y \)

You can then use this to get the final pair of cordinates,

\(\begin{align*} (\frac{9}{5},\frac{12}{5}) \end{align*}\)

 

here is the link to the graph

https://www.desmos.com/calculator 

copy and paste.

HOPE THIS HELPS

 Aug 12, 2019
 #2
avatar+103122 
+1

3x + 4y  = 15   ⇒  4y  = 15-3x    ⇒  y  =  [ 15 -3x ] / 4       (1) 

x^2 + y^2  = 9        (2)

 

Sub (1) into 2 for y  and we have

 

x^2  +  ( [15 - 3x ] / 4 )^2  = 9            simplify

 

x^2  + (1/16) ( 9x^2  - 90x + 225)  = 9          multiply through by 16

 

16x^2  + 9x^2 - 90x + 225  =  144

 

25x^2  - 90x  + 81  = 0         factor

 

(5x - 9) (5x - 9)  = 0

 

(5x- 9)^2  = 0         take the square root

 

5x  - 9  = 0      add 9 to both sides

 

5x  = 9      divide both sides by 5

 

x  = 9/5

 

And using (1)

 

y  =   [ 15 - 3(9/5) ] / 4   =  [ 15 - 27/5 ] / 4   =  [ 75 - 27 ]/ 20  =  48 / 20   =   12 / 5

 

So  the intersection point is  ( 9/5, 12/5)

 

 

cool cool cool

 Aug 12, 2019

33 Online Users

avatar
avatar
avatar
avatar
avatar